class OLMoTransformer extends AnnotatorModel[OLMoTransformer] with HasBatchedAnnotate[OLMoTransformer] with ParamsAndFeaturesWritable with WriteOnnxModel with HasGeneratorProperties with HasEngine
OLMo: Open Language Models
OLMo is a series of Open Language Models designed to enable the science of language models. The OLMo models are trained on the Dolma dataset.
Pretrained models can be loaded with pretrained of the companion object:
val OLMo = OLMoTransformer.pretrained() .setInputCols("document") .setOutputCol("generation")
The default model is "olmo_1b_int4", if no name is provided. For available pretrained models
please see the Models Hub.
For extended examples of usage, see OLMoTestSpec.
References:
Paper Abstract:
Language models (LMs) have become ubiquitous in both NLP research and in commercial product offerings. As their commercial importance has surged, the most powerful models have become closed off, gated behind proprietary interfaces, with important details of their training data, architectures, and development undisclosed. Given the importance of these details in scientifically studying these models, including their biases and potential risks, we believe it is essential for the research community to have access to powerful, truly open LMs. To this end, this technical report details the first release of OLMo, a state-of-the-art, truly Open Language Model and its framework to build and study the science of language modeling. Unlike most prior efforts that have only released model weights and inference code, we release OLMo and the whole framework, including training data and training and evaluation code. We hope this release will empower and strengthen the open research community and inspire a new wave of innovation.
Note:
This is a very computationally expensive module especially on larger sequence. The use of an accelerator such as GPU is recommended.
Example
import spark.implicits._ import com.johnsnowlabs.nlp.base.DocumentAssembler import com.johnsnowlabs.nlp.annotators.seq2seq.OLMoTransformer import org.apache.spark.ml.Pipeline val documentAssembler = new DocumentAssembler() .setInputCol("text") .setOutputCol("documents") val OLMo = OLMoTransformer.pretrained("olmo_1b_int4") .setInputCols(Array("documents")) .setMinOutputLength(10) .setMaxOutputLength(50) .setDoSample(false) .setTopK(50) .setNoRepeatNgramSize(3) .setOutputCol("generation") val pipeline = new Pipeline().setStages(Array(documentAssembler, OLMo)) val data = Seq( "My name is Leonardo." ).toDF("text") val result = pipeline.fit(data).transform(data) results.select("generation.result").show(truncate = false) +----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ |result | +----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ |[ My name is Leonardo . I am a student of the University of California, Berkeley. I am interested in the field of Artificial Intelligence and its applications in the real world. I have a strong | | passion for learning and am always looking for ways to improve my knowledge and skills] | +----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
- Grouped
 - Alphabetic
 - By Inheritance
 
- OLMoTransformer
 - HasEngine
 - HasGeneratorProperties
 - WriteOnnxModel
 - HasBatchedAnnotate
 - AnnotatorModel
 - CanBeLazy
 - RawAnnotator
 - HasOutputAnnotationCol
 - HasInputAnnotationCols
 - HasOutputAnnotatorType
 - ParamsAndFeaturesWritable
 - HasFeatures
 - DefaultParamsWritable
 - MLWritable
 - Model
 - Transformer
 - PipelineStage
 - Logging
 - Params
 - Serializable
 - Serializable
 - Identifiable
 - AnyRef
 - Any
 
- Hide All
 - Show All
 
- Public
 - All
 
Instance Constructors
Type Members
- 
      
      
      
        
      
    
      
        
        type
      
      
        AnnotationContent = Seq[Row]
      
      
      
internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI
internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI
- Attributes
 - protected
 - Definition Classes
 - AnnotatorModel
 
 - 
      
      
      
        
      
    
      
        
        type
      
      
        AnnotatorType = String
      
      
      
- Definition Classes
 - HasOutputAnnotatorType
 
 
Value Members
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        !=(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ##(): Int
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        $[T](param: Param[T]): T
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        $$[T](feature: StructFeature[T]): T
      
      
      
- Attributes
 - protected
 - Definition Classes
 - HasFeatures
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        $$[K, V](feature: MapFeature[K, V]): Map[K, V]
      
      
      
- Attributes
 - protected
 - Definition Classes
 - HasFeatures
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        $$[T](feature: SetFeature[T]): Set[T]
      
      
      
- Attributes
 - protected
 - Definition Classes
 - HasFeatures
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        $$[T](feature: ArrayFeature[T]): Array[T]
      
      
      
- Attributes
 - protected
 - Definition Classes
 - HasFeatures
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ==(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        _transform(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): DataFrame
      
      
      
- Attributes
 - protected
 - Definition Classes
 - AnnotatorModel
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        afterAnnotate(dataset: DataFrame): DataFrame
      
      
      
- Attributes
 - protected
 - Definition Classes
 - AnnotatorModel
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        asInstanceOf[T0]: T0
      
      
      
- Definition Classes
 - Any
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        batchAnnotate(batchedAnnotations: Seq[Array[Annotation]]): Seq[Seq[Annotation]]
      
      
      
takes a document and annotations and produces new annotations of this annotator's annotation type
takes a document and annotations and produces new annotations of this annotator's annotation type
- batchedAnnotations
 Annotations that correspond to inputAnnotationCols generated by previous annotators if any
- returns
 any number of annotations processed for every input annotation. Not necessary one to one relationship
- Definition Classes
 - OLMoTransformer → HasBatchedAnnotate
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        batchProcess(rows: Iterator[_]): Iterator[Row]
      
      
      
- Definition Classes
 - HasBatchedAnnotate
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        batchSize: IntParam
      
      
      
Size of every batch (Default depends on model).
Size of every batch (Default depends on model).
- Definition Classes
 - HasBatchedAnnotate
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        beamSize: IntParam
      
      
      
Beam size for the beam search algorithm (Default:
4)Beam size for the beam search algorithm (Default:
4)- Definition Classes
 - HasGeneratorProperties
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        beforeAnnotate(dataset: Dataset[_]): Dataset[_]
      
      
      
- Attributes
 - protected
 - Definition Classes
 - AnnotatorModel
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
      
      
      
- Attributes
 - protected
 - Definition Classes
 - HasInputAnnotationCols
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        clear(param: Param[_]): OLMoTransformer.this.type
      
      
      
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        clone(): AnyRef
      
      
      
- Attributes
 - protected[lang]
 - Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... ) @native()
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        copy(extra: ParamMap): OLMoTransformer
      
      
      
requirement for annotators copies
requirement for annotators copies
- Definition Classes
 - RawAnnotator → Model → Transformer → PipelineStage → Params
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        copyValues[T <: Params](to: T, extra: ParamMap): T
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        defaultCopy[T <: Params](extra: ParamMap): T
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        doSample: BooleanParam
      
      
      
Whether or not to use sampling, use greedy decoding otherwise (Default:
false)Whether or not to use sampling, use greedy decoding otherwise (Default:
false)- Definition Classes
 - HasGeneratorProperties
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        engine: Param[String]
      
      
      
This param is set internally once via loadSavedModel.
This param is set internally once via loadSavedModel. That's why there is no setter
- Definition Classes
 - HasEngine
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        eq(arg0: AnyRef): Boolean
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        equals(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        explainParam(param: Param[_]): String
      
      
      
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        explainParams(): String
      
      
      
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        extraValidate(structType: StructType): Boolean
      
      
      
- Attributes
 - protected
 - Definition Classes
 - RawAnnotator
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        extraValidateMsg: String
      
      
      
Override for additional custom schema checks
Override for additional custom schema checks
- Attributes
 - protected
 - Definition Classes
 - RawAnnotator
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        extractParamMap(): ParamMap
      
      
      
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        extractParamMap(extra: ParamMap): ParamMap
      
      
      
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        features: ArrayBuffer[Feature[_, _, _]]
      
      
      
- Definition Classes
 - HasFeatures
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        finalize(): Unit
      
      
      
- Attributes
 - protected[lang]
 - Definition Classes
 - AnyRef
 - Annotations
 - @throws( classOf[java.lang.Throwable] )
 
 -  val generationConfig: StructFeature[GenerationConfig]
 - 
      
      
      
        
      
    
      
        
        def
      
      
        get[T](feature: StructFeature[T]): Option[T]
      
      
      
- Attributes
 - protected
 - Definition Classes
 - HasFeatures
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        get[K, V](feature: MapFeature[K, V]): Option[Map[K, V]]
      
      
      
- Attributes
 - protected
 - Definition Classes
 - HasFeatures
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        get[T](feature: SetFeature[T]): Option[Set[T]]
      
      
      
- Attributes
 - protected
 - Definition Classes
 - HasFeatures
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        get[T](feature: ArrayFeature[T]): Option[Array[T]]
      
      
      
- Attributes
 - protected
 - Definition Classes
 - HasFeatures
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        get[T](param: Param[T]): Option[T]
      
      
      
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        getBatchSize: Int
      
      
      
Size of every batch.
Size of every batch.
- Definition Classes
 - HasBatchedAnnotate
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        getBeamSize: Int
      
      
      
- Definition Classes
 - HasGeneratorProperties
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getClass(): Class[_]
      
      
      
- Definition Classes
 - AnyRef → Any
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getDefault[T](param: Param[T]): Option[T]
      
      
      
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        getDoSample: Boolean
      
      
      
- Definition Classes
 - HasGeneratorProperties
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        getEngine: String
      
      
      
- Definition Classes
 - HasEngine
 
 -  def getGenerationConfig: GenerationConfig
 -  def getIgnoreTokenIds: Array[Int]
 - 
      
      
      
        
      
    
      
        
        def
      
      
        getInputCols: Array[String]
      
      
      
- returns
 input annotations columns currently used
- Definition Classes
 - HasInputAnnotationCols
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        getLazyAnnotator: Boolean
      
      
      
- Definition Classes
 - CanBeLazy
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        getMaxOutputLength: Int
      
      
      
- Definition Classes
 - HasGeneratorProperties
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        getMinOutputLength: Int
      
      
      
- Definition Classes
 - HasGeneratorProperties
 
 -  def getModelIfNotSet: OLMo
 - 
      
      
      
        
      
    
      
        
        def
      
      
        getNReturnSequences: Int
      
      
      
- Definition Classes
 - HasGeneratorProperties
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        getNoRepeatNgramSize: Int
      
      
      
- Definition Classes
 - HasGeneratorProperties
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getOrDefault[T](param: Param[T]): T
      
      
      
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getOutputCol: String
      
      
      
Gets annotation column name going to generate
Gets annotation column name going to generate
- Definition Classes
 - HasOutputAnnotationCol
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        getParam(paramName: String): Param[Any]
      
      
      
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        getRandomSeed: Option[Long]
      
      
      
- Definition Classes
 - HasGeneratorProperties
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        getRepetitionPenalty: Double
      
      
      
- Definition Classes
 - HasGeneratorProperties
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        getStopTokenIds: Array[Int]
      
      
      
- Definition Classes
 - HasGeneratorProperties
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        getTask: Option[String]
      
      
      
- Definition Classes
 - HasGeneratorProperties
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        getTemperature: Double
      
      
      
- Definition Classes
 - HasGeneratorProperties
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        getTopK: Int
      
      
      
- Definition Classes
 - HasGeneratorProperties
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        getTopP: Double
      
      
      
- Definition Classes
 - HasGeneratorProperties
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        hasDefault[T](param: Param[T]): Boolean
      
      
      
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        hasParam(paramName: String): Boolean
      
      
      
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        hasParent: Boolean
      
      
      
- Definition Classes
 - Model
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        hashCode(): Int
      
      
      
- Definition Classes
 - AnyRef → Any
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        
        var
      
      
        ignoreTokenIds: IntArrayParam
      
      
      
A list of token ids which are ignored in the decoder's output (Default:
Array()) - 
      
      
      
        
      
    
      
        
        def
      
      
        initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        initializeLogIfNecessary(isInterpreter: Boolean): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        inputAnnotatorTypes: Array[AnnotatorType]
      
      
      
Input annotator type : DOCUMENT
Input annotator type : DOCUMENT
- Definition Classes
 - OLMoTransformer → HasInputAnnotationCols
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        inputCols: StringArrayParam
      
      
      
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
- Attributes
 - protected
 - Definition Classes
 - HasInputAnnotationCols
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        isDefined(param: Param[_]): Boolean
      
      
      
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        isInstanceOf[T0]: Boolean
      
      
      
- Definition Classes
 - Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        isSet(param: Param[_]): Boolean
      
      
      
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        isTraceEnabled(): Boolean
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        lazyAnnotator: BooleanParam
      
      
      
- Definition Classes
 - CanBeLazy
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        log: Logger
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logDebug(msg: ⇒ String, throwable: Throwable): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logDebug(msg: ⇒ String): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logError(msg: ⇒ String, throwable: Throwable): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logError(msg: ⇒ String): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logInfo(msg: ⇒ String, throwable: Throwable): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logInfo(msg: ⇒ String): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logName: String
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logTrace(msg: ⇒ String, throwable: Throwable): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logTrace(msg: ⇒ String): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logWarning(msg: ⇒ String, throwable: Throwable): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logWarning(msg: ⇒ String): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        maxInputLength: IntParam
      
      
      
max length of the input sequence (Default:
0)max length of the input sequence (Default:
0)- Definition Classes
 - HasGeneratorProperties
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        maxOutputLength: IntParam
      
      
      
Maximum length of the sequence to be generated (Default:
20)Maximum length of the sequence to be generated (Default:
20)- Definition Classes
 - HasGeneratorProperties
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        merges: MapFeature[(String, String), Int]
      
      
      
Holding merges.txt coming from RoBERTa model
 - 
      
      
      
        
      
    
      
        
        val
      
      
        minOutputLength: IntParam
      
      
      
Minimum length of the sequence to be generated (Default:
0)Minimum length of the sequence to be generated (Default:
0)- Definition Classes
 - HasGeneratorProperties
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        msgHelper(schema: StructType): String
      
      
      
- Attributes
 - protected
 - Definition Classes
 - HasInputAnnotationCols
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        nReturnSequences: IntParam
      
      
      
The number of sequences to return from the beam search.
The number of sequences to return from the beam search.
- Definition Classes
 - HasGeneratorProperties
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ne(arg0: AnyRef): Boolean
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        noRepeatNgramSize: IntParam
      
      
      
If set to int >
0, all ngrams of that size can only occur once (Default:0)If set to int >
0, all ngrams of that size can only occur once (Default:0)- Definition Classes
 - HasGeneratorProperties
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        notify(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        notifyAll(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        onWrite(path: String, spark: SparkSession): Unit
      
      
      
- Definition Classes
 - OLMoTransformer → ParamsAndFeaturesWritable
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        optionalInputAnnotatorTypes: Array[String]
      
      
      
- Definition Classes
 - HasInputAnnotationCols
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        outputAnnotatorType: String
      
      
      
Output annotator type : DOCUMENT
Output annotator type : DOCUMENT
- Definition Classes
 - OLMoTransformer → HasOutputAnnotatorType
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        outputCol: Param[String]
      
      
      
- Attributes
 - protected
 - Definition Classes
 - HasOutputAnnotationCol
 
 - 
      
      
      
        
      
    
      
        
        lazy val
      
      
        params: Array[Param[_]]
      
      
      
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        
        var
      
      
        parent: Estimator[OLMoTransformer]
      
      
      
- Definition Classes
 - Model
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        randomSeed: Option[Long]
      
      
      
Optional Random seed for the model.
Optional Random seed for the model. Needs to be of type
Int.- Definition Classes
 - HasGeneratorProperties
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        repetitionPenalty: DoubleParam
      
      
      
The parameter for repetition penalty (Default:
1.0).The parameter for repetition penalty (Default:
1.0).1.0means no penalty. See this paper for more details.- Definition Classes
 - HasGeneratorProperties
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        save(path: String): Unit
      
      
      
- Definition Classes
 - MLWritable
 - Annotations
 - @Since( "1.6.0" ) @throws( ... )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        set[T](feature: StructFeature[T], value: T): OLMoTransformer.this.type
      
      
      
- Attributes
 - protected
 - Definition Classes
 - HasFeatures
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        set[K, V](feature: MapFeature[K, V], value: Map[K, V]): OLMoTransformer.this.type
      
      
      
- Attributes
 - protected
 - Definition Classes
 - HasFeatures
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        set[T](feature: SetFeature[T], value: Set[T]): OLMoTransformer.this.type
      
      
      
- Attributes
 - protected
 - Definition Classes
 - HasFeatures
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        set[T](feature: ArrayFeature[T], value: Array[T]): OLMoTransformer.this.type
      
      
      
- Attributes
 - protected
 - Definition Classes
 - HasFeatures
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        set(paramPair: ParamPair[_]): OLMoTransformer.this.type
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        set(param: String, value: Any): OLMoTransformer.this.type
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        set[T](param: Param[T], value: T): OLMoTransformer.this.type
      
      
      
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setBatchSize(size: Int): OLMoTransformer.this.type
      
      
      
Size of every batch.
Size of every batch.
- Definition Classes
 - HasBatchedAnnotate
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setBeamSize(beamNum: Int): OLMoTransformer.this.type
      
      
      
- Definition Classes
 - HasGeneratorProperties
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setDefault[T](feature: StructFeature[T], value: () ⇒ T): OLMoTransformer.this.type
      
      
      
- Attributes
 - protected
 - Definition Classes
 - HasFeatures
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setDefault[K, V](feature: MapFeature[K, V], value: () ⇒ Map[K, V]): OLMoTransformer.this.type
      
      
      
- Attributes
 - protected
 - Definition Classes
 - HasFeatures
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setDefault[T](feature: SetFeature[T], value: () ⇒ Set[T]): OLMoTransformer.this.type
      
      
      
- Attributes
 - protected
 - Definition Classes
 - HasFeatures
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setDefault[T](feature: ArrayFeature[T], value: () ⇒ Array[T]): OLMoTransformer.this.type
      
      
      
- Attributes
 - protected
 - Definition Classes
 - HasFeatures
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        setDefault(paramPairs: ParamPair[_]*): OLMoTransformer.this.type
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        setDefault[T](param: Param[T], value: T): OLMoTransformer.this.type
      
      
      
- Attributes
 - protected[org.apache.spark.ml]
 - Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setDoSample(value: Boolean): OLMoTransformer.this.type
      
      
      
- Definition Classes
 - HasGeneratorProperties
 
 -  def setGenerationConfig(value: GenerationConfig): OLMoTransformer.this.type
 -  def setIgnoreTokenIds(tokenIds: Array[Int]): OLMoTransformer.this.type
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        setInputCols(value: String*): OLMoTransformer.this.type
      
      
      
- Definition Classes
 - HasInputAnnotationCols
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setInputCols(value: Array[String]): OLMoTransformer.this.type
      
      
      
Overrides required annotators column if different than default
Overrides required annotators column if different than default
- Definition Classes
 - HasInputAnnotationCols
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setLazyAnnotator(value: Boolean): OLMoTransformer.this.type
      
      
      
- Definition Classes
 - CanBeLazy
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setMaxInputLength(value: Int): OLMoTransformer.this.type
      
      
      
- Definition Classes
 - HasGeneratorProperties
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setMaxOutputLength(value: Int): OLMoTransformer.this.type
      
      
      
- Definition Classes
 - HasGeneratorProperties
 
 -  def setMerges(value: Map[(String, String), Int]): OLMoTransformer.this.type
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setMinOutputLength(value: Int): OLMoTransformer.this.type
      
      
      
- Definition Classes
 - HasGeneratorProperties
 
 -  def setModelIfNotSet(spark: SparkSession, onnxWrappers: DecoderWrappers): OLMoTransformer.this.type
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setNReturnSequences(beamNum: Int): OLMoTransformer.this.type
      
      
      
- Definition Classes
 - HasGeneratorProperties
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setNoRepeatNgramSize(value: Int): OLMoTransformer.this.type
      
      
      
- Definition Classes
 - HasGeneratorProperties
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        setOutputCol(value: String): OLMoTransformer.this.type
      
      
      
Overrides annotation column name when transforming
Overrides annotation column name when transforming
- Definition Classes
 - HasOutputAnnotationCol
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setParent(parent: Estimator[OLMoTransformer]): OLMoTransformer
      
      
      
- Definition Classes
 - Model
 
 -  def setRandomSeed(value: Int): OLMoTransformer.this.type
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setRandomSeed(value: Long): OLMoTransformer.this.type
      
      
      
- Definition Classes
 - HasGeneratorProperties
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setRepetitionPenalty(value: Double): OLMoTransformer.this.type
      
      
      
- Definition Classes
 - HasGeneratorProperties
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setStopTokenIds(value: Array[Int]): OLMoTransformer.this.type
      
      
      
- Definition Classes
 - HasGeneratorProperties
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setTask(value: String): OLMoTransformer.this.type
      
      
      
- Definition Classes
 - HasGeneratorProperties
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setTemperature(value: Double): OLMoTransformer.this.type
      
      
      
- Definition Classes
 - HasGeneratorProperties
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setTopK(value: Int): OLMoTransformer.this.type
      
      
      
- Definition Classes
 - HasGeneratorProperties
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setTopP(value: Double): OLMoTransformer.this.type
      
      
      
- Definition Classes
 - HasGeneratorProperties
 
 -  def setVocabulary(value: Map[String, Int]): OLMoTransformer.this.type
 - 
      
      
      
        
      
    
      
        
        val
      
      
        stopTokenIds: IntArrayParam
      
      
      
Stop tokens to terminate the generation
Stop tokens to terminate the generation
- Definition Classes
 - HasGeneratorProperties
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        synchronized[T0](arg0: ⇒ T0): T0
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        task: Param[String]
      
      
      
Set transformer task, e.g.
Set transformer task, e.g.
"summarize:"(Default:"").- Definition Classes
 - HasGeneratorProperties
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        temperature: DoubleParam
      
      
      
The value used to module the next token probabilities (Default:
1.0)The value used to module the next token probabilities (Default:
1.0)- Definition Classes
 - HasGeneratorProperties
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        toString(): String
      
      
      
- Definition Classes
 - Identifiable → AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        topK: IntParam
      
      
      
The number of highest probability vocabulary tokens to keep for top-k-filtering (Default:
50)The number of highest probability vocabulary tokens to keep for top-k-filtering (Default:
50)- Definition Classes
 - HasGeneratorProperties
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        topP: DoubleParam
      
      
      
If set to float <
1.0, only the most probable tokens with probabilities that add up totopPor higher are kept for generation (Default:1.0)If set to float <
1.0, only the most probable tokens with probabilities that add up totopPor higher are kept for generation (Default:1.0)- Definition Classes
 - HasGeneratorProperties
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        transform(dataset: Dataset[_]): DataFrame
      
      
      
Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content
Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content
- dataset
 Dataset[Row]
- Definition Classes
 - AnnotatorModel → Transformer
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame
      
      
      
- Definition Classes
 - Transformer
 - Annotations
 - @Since( "2.0.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame
      
      
      
- Definition Classes
 - Transformer
 - Annotations
 - @Since( "2.0.0" ) @varargs()
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        transformSchema(schema: StructType): StructType
      
      
      
requirement for pipeline transformation validation.
requirement for pipeline transformation validation. It is called on fit()
- Definition Classes
 - RawAnnotator → PipelineStage
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        transformSchema(schema: StructType, logging: Boolean): StructType
      
      
      
- Attributes
 - protected
 - Definition Classes
 - PipelineStage
 - Annotations
 - @DeveloperApi()
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        uid: String
      
      
      
- Definition Classes
 - OLMoTransformer → Identifiable
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        validate(schema: StructType): Boolean
      
      
      
takes a Dataset and checks to see if all the required annotation types are present.
takes a Dataset and checks to see if all the required annotation types are present.
- schema
 to be validated
- returns
 True if all the required types are present, else false
- Attributes
 - protected
 - Definition Classes
 - RawAnnotator
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        vocabulary: MapFeature[String, Int]
      
      
      
Vocabulary used to encode the words to ids with bpeTokenizer.encode
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long, arg1: Int): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... ) @native()
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        wrapColumnMetadata(col: Column): Column
      
      
      
- Attributes
 - protected
 - Definition Classes
 - RawAnnotator
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        write: MLWriter
      
      
      
- Definition Classes
 - ParamsAndFeaturesWritable → DefaultParamsWritable → MLWritable
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        writeOnnxModel(path: String, spark: SparkSession, onnxWrapper: OnnxWrapper, suffix: String, fileName: String): Unit
      
      
      
- Definition Classes
 - WriteOnnxModel
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        writeOnnxModels(path: String, spark: SparkSession, onnxWrappersWithNames: Seq[(OnnxWrapper, String)], suffix: String): Unit
      
      
      
- Definition Classes
 - WriteOnnxModel
 
 
Inherited from HasEngine
Inherited from HasGeneratorProperties
Inherited from WriteOnnxModel
Inherited from HasBatchedAnnotate[OLMoTransformer]
Inherited from AnnotatorModel[OLMoTransformer]
Inherited from CanBeLazy
Inherited from RawAnnotator[OLMoTransformer]
Inherited from HasOutputAnnotationCol
Inherited from HasInputAnnotationCols
Inherited from HasOutputAnnotatorType
Inherited from ParamsAndFeaturesWritable
Inherited from HasFeatures
Inherited from DefaultParamsWritable
Inherited from MLWritable
Inherited from Model[OLMoTransformer]
Inherited from Transformer
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Parameters
A list of (hyper-)parameter keys this annotator can take. Users can set and get the parameter values through setters and getters, respectively.