com.johnsnowlabs.nlp.annotators.classifier.dl
RoBertaForSequenceClassification 
            Companion object RoBertaForSequenceClassification
          
      class RoBertaForSequenceClassification extends AnnotatorModel[RoBertaForSequenceClassification] with HasBatchedAnnotate[RoBertaForSequenceClassification] with WriteTensorflowModel with WriteOnnxModel with WriteOpenvinoModel with HasCaseSensitiveProperties with HasClassifierActivationProperties with HasEngine
RoBertaForSequenceClassification can load RoBERTa Models with sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for multi-class document classification tasks.
Pretrained models can be loaded with pretrained of the companion object:
val sequenceClassifier = RoBertaForSequenceClassification.pretrained() .setInputCols("token", "document") .setOutputCol("label")
The default model is "roberta_base_sequence_classifier_imdb", if no name is provided.
For available pretrained models please see the Models Hub.
To see which models are compatible and how to import them see https://github.com/JohnSnowLabs/spark-nlp/discussions/5669 and to see more extended examples, see RoBertaForSequenceClassification.
Example
import spark.implicits._ import com.johnsnowlabs.nlp.base._ import com.johnsnowlabs.nlp.annotator._ import org.apache.spark.ml.Pipeline val documentAssembler = new DocumentAssembler() .setInputCol("text") .setOutputCol("document") val tokenizer = new Tokenizer() .setInputCols("document") .setOutputCol("token") val sequenceClassifier = RoBertaForSequenceClassification.pretrained() .setInputCols("token", "document") .setOutputCol("label") .setCaseSensitive(true) val pipeline = new Pipeline().setStages(Array( documentAssembler, tokenizer, sequenceClassifier )) val data = Seq("I loved this movie when I was a child.", "It was pretty boring.").toDF("text") val result = pipeline.fit(data).transform(data) result.select("label.result").show(false) +------+ |result| +------+ |[pos] | |[neg] | +------+
- See also
- RoBertaForSequenceClassification for sequence-level classification - Annotators Main Page for a list of transformer based classifiers 
- Grouped
- Alphabetic
- By Inheritance
- RoBertaForSequenceClassification
- HasEngine
- HasClassifierActivationProperties
- HasCaseSensitiveProperties
- WriteOpenvinoModel
- WriteOnnxModel
- WriteTensorflowModel
- HasBatchedAnnotate
- AnnotatorModel
- CanBeLazy
- RawAnnotator
- HasOutputAnnotationCol
- HasInputAnnotationCols
- HasOutputAnnotatorType
- ParamsAndFeaturesWritable
- HasFeatures
- DefaultParamsWritable
- MLWritable
- Model
- Transformer
- PipelineStage
- Logging
- Params
- Serializable
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
Type Members
- 
      
      
      
        
      
    
      
        
        type
      
      
        AnnotationContent = Seq[Row]
      
      
      internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI - Attributes
- protected
- Definition Classes
- AnnotatorModel
 
- 
      
      
      
        
      
    
      
        
        type
      
      
        AnnotatorType = String
      
      
      - Definition Classes
- HasOutputAnnotatorType
 
Value Members
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        !=(arg0: Any): Boolean
      
      
      - Definition Classes
- AnyRef → Any
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        ##(): Int
      
      
      - Definition Classes
- AnyRef → Any
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        $[T](param: Param[T]): T
      
      
      - Attributes
- protected
- Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        $$[T](feature: StructFeature[T]): T
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        $$[K, V](feature: MapFeature[K, V]): Map[K, V]
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        $$[T](feature: SetFeature[T]): Set[T]
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        $$[T](feature: ArrayFeature[T]): Array[T]
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        ==(arg0: Any): Boolean
      
      
      - Definition Classes
- AnyRef → Any
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        _transform(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): DataFrame
      
      
      - Attributes
- protected
- Definition Classes
- AnnotatorModel
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        activation: Param[String]
      
      
      Whether to enable caching DataFrames or RDDs during the training (Default depends on model). Whether to enable caching DataFrames or RDDs during the training (Default depends on model). - Definition Classes
- HasClassifierActivationProperties
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        afterAnnotate(dataset: DataFrame): DataFrame
      
      
      - Attributes
- protected
- Definition Classes
- AnnotatorModel
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        asInstanceOf[T0]: T0
      
      
      - Definition Classes
- Any
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        batchAnnotate(batchedAnnotations: Seq[Array[Annotation]]): Seq[Seq[Annotation]]
      
      
      takes a document and annotations and produces new annotations of this annotator's annotation type takes a document and annotations and produces new annotations of this annotator's annotation type - batchedAnnotations
- Annotations that correspond to inputAnnotationCols generated by previous annotators if any 
- returns
- any number of annotations processed for every input annotation. Not necessary one to one relationship 
 - Definition Classes
- RoBertaForSequenceClassification → HasBatchedAnnotate
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        batchProcess(rows: Iterator[_]): Iterator[Row]
      
      
      - Definition Classes
- HasBatchedAnnotate
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        batchSize: IntParam
      
      
      Size of every batch (Default depends on model). Size of every batch (Default depends on model). - Definition Classes
- HasBatchedAnnotate
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        beforeAnnotate(dataset: Dataset[_]): Dataset[_]
      
      
      - Attributes
- protected
- Definition Classes
- AnnotatorModel
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        caseSensitive: BooleanParam
      
      
      Whether to ignore case in index lookups (Default depends on model) Whether to ignore case in index lookups (Default depends on model) - Definition Classes
- HasCaseSensitiveProperties
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
      
      
      - Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        clear(param: Param[_]): RoBertaForSequenceClassification.this.type
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        clone(): AnyRef
      
      
      - Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        coalesceSentences: BooleanParam
      
      
      Instead of 1 class per sentence (if inputCols is sentence) output 1 class per document by averaging probabilities in all sentences (Default: false).Instead of 1 class per sentence (if inputCols is sentence) output 1 class per document by averaging probabilities in all sentences (Default: false).Due to max sequence length limit in almost all transformer models such as BERT (512 tokens), this parameter helps feeding all the sentences into the model and averaging all the probabilities for the entire document instead of probabilities per sentence. 
- 
      
      
      
        
      
    
      
        
        val
      
      
        configProtoBytes: IntArrayParam
      
      
      ConfigProto from tensorflow, serialized into byte array. ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()
- 
      
      
      
        
      
    
      
        
        def
      
      
        copy(extra: ParamMap): RoBertaForSequenceClassification
      
      
      requirement for annotators copies requirement for annotators copies - Definition Classes
- RawAnnotator → Model → Transformer → PipelineStage → Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        copyValues[T <: Params](to: T, extra: ParamMap): T
      
      
      - Attributes
- protected
- Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        defaultCopy[T <: Params](extra: ParamMap): T
      
      
      - Attributes
- protected
- Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        engine: Param[String]
      
      
      This param is set internally once via loadSavedModel. This param is set internally once via loadSavedModel. That's why there is no setter - Definition Classes
- HasEngine
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        eq(arg0: AnyRef): Boolean
      
      
      - Definition Classes
- AnyRef
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        equals(arg0: Any): Boolean
      
      
      - Definition Classes
- AnyRef → Any
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        explainParam(param: Param[_]): String
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        explainParams(): String
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        extraValidate(structType: StructType): Boolean
      
      
      - Attributes
- protected
- Definition Classes
- RawAnnotator
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        extraValidateMsg: String
      
      
      Override for additional custom schema checks Override for additional custom schema checks - Attributes
- protected
- Definition Classes
- RawAnnotator
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        extractParamMap(): ParamMap
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        extractParamMap(extra: ParamMap): ParamMap
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        features: ArrayBuffer[Feature[_, _, _]]
      
      
      - Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        finalize(): Unit
      
      
      - Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        get[T](feature: StructFeature[T]): Option[T]
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        get[K, V](feature: MapFeature[K, V]): Option[Map[K, V]]
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        get[T](feature: SetFeature[T]): Option[Set[T]]
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        get[T](feature: ArrayFeature[T]): Option[Array[T]]
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        get[T](param: Param[T]): Option[T]
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getActivation: String
      
      
      - Definition Classes
- HasClassifierActivationProperties
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getBatchSize: Int
      
      
      Size of every batch. Size of every batch. - Definition Classes
- HasBatchedAnnotate
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getCaseSensitive: Boolean
      
      
      - Definition Classes
- HasCaseSensitiveProperties
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        getClass(): Class[_]
      
      
      - Definition Classes
- AnyRef → Any
- Annotations
- @native()
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getClasses: Array[String]
      
      
      Returns labels used to train this model 
-  def getCoalesceSentences: Boolean
-  def getConfigProtoBytes: Option[Array[Byte]]
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        getDefault[T](param: Param[T]): Option[T]
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getEngine: String
      
      
      - Definition Classes
- HasEngine
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getInputCols: Array[String]
      
      
      - returns
- input annotations columns currently used 
 - Definition Classes
- HasInputAnnotationCols
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getLazyAnnotator: Boolean
      
      
      - Definition Classes
- CanBeLazy
 
-  def getMaxSentenceLength: Int
-  def getModelIfNotSet: RoBertaClassification
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        getOrDefault[T](param: Param[T]): T
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        getOutputCol: String
      
      
      Gets annotation column name going to generate Gets annotation column name going to generate - Definition Classes
- HasOutputAnnotationCol
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getParam(paramName: String): Param[Any]
      
      
      - Definition Classes
- Params
 
-  def getSignatures: Option[Map[String, String]]
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        hasDefault[T](param: Param[T]): Boolean
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        hasParam(paramName: String): Boolean
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        hasParent: Boolean
      
      
      - Definition Classes
- Model
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        hashCode(): Int
      
      
      - Definition Classes
- AnyRef → Any
- Annotations
- @native()
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        initializeLogIfNecessary(isInterpreter: Boolean): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        inputAnnotatorTypes: Array[String]
      
      
      Input Annotator Types: DOCUMENT, TOKEN Input Annotator Types: DOCUMENT, TOKEN - Definition Classes
- RoBertaForSequenceClassification → HasInputAnnotationCols
 
- 
      
      
      
        
      
    
      
        final 
        val
      
      
        inputCols: StringArrayParam
      
      
      columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified - Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        isDefined(param: Param[_]): Boolean
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        isInstanceOf[T0]: Boolean
      
      
      - Definition Classes
- Any
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        isSet(param: Param[_]): Boolean
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        isTraceEnabled(): Boolean
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        labels: MapFeature[String, Int]
      
      
      Labels used to decode predicted IDs back to string tags 
- 
      
      
      
        
      
    
      
        
        val
      
      
        lazyAnnotator: BooleanParam
      
      
      - Definition Classes
- CanBeLazy
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        log: Logger
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logDebug(msg: ⇒ String, throwable: Throwable): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logDebug(msg: ⇒ String): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logError(msg: ⇒ String, throwable: Throwable): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logError(msg: ⇒ String): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logInfo(msg: ⇒ String, throwable: Throwable): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logInfo(msg: ⇒ String): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logName: String
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logTrace(msg: ⇒ String, throwable: Throwable): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logTrace(msg: ⇒ String): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logWarning(msg: ⇒ String, throwable: Throwable): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logWarning(msg: ⇒ String): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        maxSentenceLength: IntParam
      
      
      Max sentence length to process (Default: 128)
- 
      
      
      
        
      
    
      
        
        val
      
      
        merges: MapFeature[(String, String), Int]
      
      
      Holding merges.txt coming from RoBERTa model 
- 
      
      
      
        
      
    
      
        
        def
      
      
        msgHelper(schema: StructType): String
      
      
      - Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        multilabel: BooleanParam
      
      
      Whether or not the result should be multi-class (the sum of all probabilities is 1.0) or multi-label (each label has a probability between 0.0 to 1.0). Whether or not the result should be multi-class (the sum of all probabilities is 1.0) or multi-label (each label has a probability between 0.0 to 1.0). Default is False i.e. multi-class - Definition Classes
- HasClassifierActivationProperties
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        ne(arg0: AnyRef): Boolean
      
      
      - Definition Classes
- AnyRef
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        notify(): Unit
      
      
      - Definition Classes
- AnyRef
- Annotations
- @native()
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        notifyAll(): Unit
      
      
      - Definition Classes
- AnyRef
- Annotations
- @native()
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        onWrite(path: String, spark: SparkSession): Unit
      
      
      - Definition Classes
- RoBertaForSequenceClassification → ParamsAndFeaturesWritable
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        optionalInputAnnotatorTypes: Array[String]
      
      
      - Definition Classes
- HasInputAnnotationCols
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        outputAnnotatorType: AnnotatorType
      
      
      Output Annotator Types: CATEGORY Output Annotator Types: CATEGORY - Definition Classes
- RoBertaForSequenceClassification → HasOutputAnnotatorType
 
- 
      
      
      
        
      
    
      
        final 
        val
      
      
        outputCol: Param[String]
      
      
      - Attributes
- protected
- Definition Classes
- HasOutputAnnotationCol
 
-  def padTokenId: Int
- 
      
      
      
        
      
    
      
        
        lazy val
      
      
        params: Array[Param[_]]
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        var
      
      
        parent: Estimator[RoBertaForSequenceClassification]
      
      
      - Definition Classes
- Model
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        save(path: String): Unit
      
      
      - Definition Classes
- MLWritable
- Annotations
- @Since( "1.6.0" ) @throws( ... )
 
-  def sentenceEndTokenId: Int
-  def sentenceStartTokenId: Int
- 
      
      
      
        
      
    
      
        
        def
      
      
        set[T](feature: StructFeature[T], value: T): RoBertaForSequenceClassification.this.type
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        set[K, V](feature: MapFeature[K, V], value: Map[K, V]): RoBertaForSequenceClassification.this.type
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        set[T](feature: SetFeature[T], value: Set[T]): RoBertaForSequenceClassification.this.type
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        set[T](feature: ArrayFeature[T], value: Array[T]): RoBertaForSequenceClassification.this.type
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        set(paramPair: ParamPair[_]): RoBertaForSequenceClassification.this.type
      
      
      - Attributes
- protected
- Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        set(param: String, value: Any): RoBertaForSequenceClassification.this.type
      
      
      - Attributes
- protected
- Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        set[T](param: Param[T], value: T): RoBertaForSequenceClassification.this.type
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setActivation(value: String): RoBertaForSequenceClassification.this.type
      
      
      - Definition Classes
- HasClassifierActivationProperties
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setBatchSize(size: Int): RoBertaForSequenceClassification.this.type
      
      
      Size of every batch. Size of every batch. - Definition Classes
- HasBatchedAnnotate
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setCaseSensitive(value: Boolean): RoBertaForSequenceClassification.this.type
      
      
      Whether to lowercase tokens or not (Default: false).Whether to lowercase tokens or not (Default: false).- Definition Classes
- RoBertaForSequenceClassification → HasCaseSensitiveProperties
 
-  def setCoalesceSentences(value: Boolean): RoBertaForSequenceClassification.this.type
-  def setConfigProtoBytes(bytes: Array[Int]): RoBertaForSequenceClassification.this.type
- 
      
      
      
        
      
    
      
        
        def
      
      
        setDefault[T](feature: StructFeature[T], value: () ⇒ T): RoBertaForSequenceClassification.this.type
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setDefault[K, V](feature: MapFeature[K, V], value: () ⇒ Map[K, V]): RoBertaForSequenceClassification.this.type
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setDefault[T](feature: SetFeature[T], value: () ⇒ Set[T]): RoBertaForSequenceClassification.this.type
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setDefault[T](feature: ArrayFeature[T], value: () ⇒ Array[T]): RoBertaForSequenceClassification.this.type
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        setDefault(paramPairs: ParamPair[_]*): RoBertaForSequenceClassification.this.type
      
      
      - Attributes
- protected
- Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        setDefault[T](param: Param[T], value: T): RoBertaForSequenceClassification.this.type
      
      
      - Attributes
- protected[org.apache.spark.ml]
- Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        setInputCols(value: String*): RoBertaForSequenceClassification.this.type
      
      
      - Definition Classes
- HasInputAnnotationCols
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setInputCols(value: Array[String]): RoBertaForSequenceClassification.this.type
      
      
      Overrides required annotators column if different than default Overrides required annotators column if different than default - Definition Classes
- HasInputAnnotationCols
 
-  def setLabels(value: Map[String, Int]): RoBertaForSequenceClassification.this.type
- 
      
      
      
        
      
    
      
        
        def
      
      
        setLazyAnnotator(value: Boolean): RoBertaForSequenceClassification.this.type
      
      
      - Definition Classes
- CanBeLazy
 
-  def setMaxSentenceLength(value: Int): RoBertaForSequenceClassification.this.type
-  def setMerges(value: Map[(String, String), Int]): RoBertaForSequenceClassification.this.type
-  def setModelIfNotSet(spark: SparkSession, tensorflowWrapper: Option[TensorflowWrapper], onnxWrapper: Option[OnnxWrapper], openvinoWrapper: Option[OpenvinoWrapper]): RoBertaForSequenceClassification
- 
      
      
      
        
      
    
      
        
        def
      
      
        setMultilabel(value: Boolean): RoBertaForSequenceClassification.this.type
      
      
      Set whether or not the result should be multi-class (the sum of all probabilities is 1.0) or multi-label (each label has a probability between 0.0 to 1.0). Set whether or not the result should be multi-class (the sum of all probabilities is 1.0) or multi-label (each label has a probability between 0.0 to 1.0). Default is False i.e. multi-class - Definition Classes
- HasClassifierActivationProperties
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        setOutputCol(value: String): RoBertaForSequenceClassification.this.type
      
      
      Overrides annotation column name when transforming Overrides annotation column name when transforming - Definition Classes
- HasOutputAnnotationCol
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setParent(parent: Estimator[RoBertaForSequenceClassification]): RoBertaForSequenceClassification
      
      
      - Definition Classes
- Model
 
-  def setSignatures(value: Map[String, String]): RoBertaForSequenceClassification.this.type
- 
      
      
      
        
      
    
      
        
        def
      
      
        setThreshold(threshold: Float): RoBertaForSequenceClassification.this.type
      
      
      Choose the threshold to determine which logits are considered to be positive or negative. Choose the threshold to determine which logits are considered to be positive or negative. (Default: 0.5f). The value should be between 0.0 and 1.0. Changing the threshold value will affect the resulting labels and can be used to adjust the balance between precision and recall in the classification process.- Definition Classes
- HasClassifierActivationProperties
 
-  def setVocabulary(value: Map[String, Int]): RoBertaForSequenceClassification.this.type
- 
      
      
      
        
      
    
      
        
        val
      
      
        signatures: MapFeature[String, String]
      
      
      It contains TF model signatures for the laded saved model 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        synchronized[T0](arg0: ⇒ T0): T0
      
      
      - Definition Classes
- AnyRef
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        threshold: FloatParam
      
      
      Choose the threshold to determine which logits are considered to be positive or negative. Choose the threshold to determine which logits are considered to be positive or negative. (Default: 0.5f). The value should be between 0.0 and 1.0. Changing the threshold value will affect the resulting labels and can be used to adjust the balance between precision and recall in the classification process.- Definition Classes
- HasClassifierActivationProperties
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        toString(): String
      
      
      - Definition Classes
- Identifiable → AnyRef → Any
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        transform(dataset: Dataset[_]): DataFrame
      
      
      Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content - dataset
- Dataset[Row] 
 - Definition Classes
- AnnotatorModel → Transformer
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame
      
      
      - Definition Classes
- Transformer
- Annotations
- @Since( "2.0.0" )
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame
      
      
      - Definition Classes
- Transformer
- Annotations
- @Since( "2.0.0" ) @varargs()
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        transformSchema(schema: StructType): StructType
      
      
      requirement for pipeline transformation validation. requirement for pipeline transformation validation. It is called on fit() - Definition Classes
- RawAnnotator → PipelineStage
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        transformSchema(schema: StructType, logging: Boolean): StructType
      
      
      - Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        uid: String
      
      
      - Definition Classes
- RoBertaForSequenceClassification → Identifiable
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        validate(schema: StructType): Boolean
      
      
      takes a Dataset and checks to see if all the required annotation types are present. takes a Dataset and checks to see if all the required annotation types are present. - schema
- to be validated 
- returns
- True if all the required types are present, else false 
 - Attributes
- protected
- Definition Classes
- RawAnnotator
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        vocabulary: MapFeature[String, Int]
      
      
      Vocabulary used to encode the words to ids with WordPieceEncoder 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(): Unit
      
      
      - Definition Classes
- AnyRef
- Annotations
- @throws( ... )
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long, arg1: Int): Unit
      
      
      - Definition Classes
- AnyRef
- Annotations
- @throws( ... )
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long): Unit
      
      
      - Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        wrapColumnMetadata(col: Column): Column
      
      
      - Attributes
- protected
- Definition Classes
- RawAnnotator
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        write: MLWriter
      
      
      - Definition Classes
- ParamsAndFeaturesWritable → DefaultParamsWritable → MLWritable
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        writeOnnxModel(path: String, spark: SparkSession, onnxWrapper: OnnxWrapper, suffix: String, fileName: String): Unit
      
      
      - Definition Classes
- WriteOnnxModel
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        writeOnnxModels(path: String, spark: SparkSession, onnxWrappersWithNames: Seq[(OnnxWrapper, String)], suffix: String): Unit
      
      
      - Definition Classes
- WriteOnnxModel
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        writeOpenvinoModel(path: String, spark: SparkSession, openvinoWrapper: OpenvinoWrapper, suffix: String, fileName: String): Unit
      
      
      - Definition Classes
- WriteOpenvinoModel
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        writeOpenvinoModels(path: String, spark: SparkSession, ovWrappersWithNames: Seq[(OpenvinoWrapper, String)], suffix: String): Unit
      
      
      - Definition Classes
- WriteOpenvinoModel
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        writeTensorflowHub(path: String, tfPath: String, spark: SparkSession, suffix: String = "_use"): Unit
      
      
      - Definition Classes
- WriteTensorflowModel
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        writeTensorflowModel(path: String, spark: SparkSession, tensorflow: TensorflowWrapper, suffix: String, filename: String, configProtoBytes: Option[Array[Byte]] = None): Unit
      
      
      - Definition Classes
- WriteTensorflowModel
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        writeTensorflowModelV2(path: String, spark: SparkSession, tensorflow: TensorflowWrapper, suffix: String, filename: String, configProtoBytes: Option[Array[Byte]] = None, savedSignatures: Option[Map[String, String]] = None): Unit
      
      
      - Definition Classes
- WriteTensorflowModel
 
Inherited from HasEngine
Inherited from HasClassifierActivationProperties
Inherited from HasCaseSensitiveProperties
Inherited from WriteOpenvinoModel
Inherited from WriteOnnxModel
Inherited from WriteTensorflowModel
Inherited from HasBatchedAnnotate[RoBertaForSequenceClassification]
Inherited from AnnotatorModel[RoBertaForSequenceClassification]
Inherited from CanBeLazy
Inherited from RawAnnotator[RoBertaForSequenceClassification]
Inherited from HasOutputAnnotationCol
Inherited from HasInputAnnotationCols
Inherited from HasOutputAnnotatorType
Inherited from ParamsAndFeaturesWritable
Inherited from HasFeatures
Inherited from DefaultParamsWritable
Inherited from MLWritable
Inherited from Model[RoBertaForSequenceClassification]
Inherited from Transformer
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Parameters
A list of (hyper-)parameter keys this annotator can take. Users can set and get the parameter values through setters and getters, respectively.
Annotator types
Required input and expected output annotator types