class DocumentTokenSplitter extends AnnotatorModel[DocumentTokenSplitter] with HasSimpleAnnotate[DocumentTokenSplitter]
Annotator that splits large documents into smaller documents based on the number of tokens in the text.
Currently, DocumentTokenSplitter splits the text by whitespaces to create the tokens. The number of these tokens will then be used as a measure of the text length. In the future, other tokenization techniques will be supported.
For example, given 3 tokens and overlap 1:
He was, I take it, the most perfect reasoning and observing machine that the world has seen. ["He was, I", "I take it,", "it, the most", "most perfect reasoning", "reasoning and observing", "observing machine that", "that the world", "world has seen."]
Additionally, you can set
- whether to trim whitespaces with setTrimWhitespace
- whether to explode the splits to individual rows with setExplodeSplits
For extended examples of usage, see the DocumentTokenSplitterTest.
Example
import com.johnsnowlabs.nlp.annotator._ import com.johnsnowlabs.nlp.DocumentAssembler import org.apache.spark.ml.Pipeline val textDF = spark.read .option("wholetext", "true") .text("src/test/resources/spell/sherlockholmes.txt") .toDF("text") val documentAssembler = new DocumentAssembler().setInputCol("text") val textSplitter = new DocumentTokenSplitter() .setInputCols("document") .setOutputCol("splits") .setNumTokens(512) .setTokenOverlap(10) .setExplodeSplits(true) val pipeline = new Pipeline().setStages(Array(documentAssembler, textSplitter)) val result = pipeline.fit(textDF).transform(textDF) result .selectExpr( "splits.result as result", "splits[0].begin as begin", "splits[0].end as end", "splits[0].end - splits[0].begin as length", "splits[0].metadata.numTokens as tokens") .show(8, truncate = 80) +--------------------------------------------------------------------------------+-----+-----+------+------+ | result|begin| end|length|tokens| +--------------------------------------------------------------------------------+-----+-----+------+------+ |[ Project Gutenberg's The Adventures of Sherlock Holmes, by Arthur Conan Doyl...| 0| 3018| 3018| 512| |[study of crime, and occupied his\nimmense faculties and extraordinary powers...| 2950| 5707| 2757| 512| |[but as I have changed my clothes I can't imagine how you\ndeduce it. As to M...| 5659| 8483| 2824| 512| |[quarters received. Be in your chamber then at that hour, and do\nnot take it...| 8427|11241| 2814| 512| |[a pity\nto miss it."\n\n"But your client--"\n\n"Never mind him. I may want y...|11188|13970| 2782| 512| |[person who employs me wishes his agent to be unknown to\nyou, and I may conf...|13918|16898| 2980| 512| |[letters back."\n\n"Precisely so. But how--"\n\n"Was there a secret marriage?...|16836|19744| 2908| 512| |[seven hundred in\nnotes," he said.\n\nHolmes scribbled a receipt upon a shee...|19683|22551| 2868| 512| +--------------------------------------------------------------------------------+-----+-----+------+------+
- Grouped
- Alphabetic
- By Inheritance
- DocumentTokenSplitter
- HasSimpleAnnotate
- AnnotatorModel
- CanBeLazy
- RawAnnotator
- HasOutputAnnotationCol
- HasInputAnnotationCols
- HasOutputAnnotatorType
- ParamsAndFeaturesWritable
- HasFeatures
- DefaultParamsWritable
- MLWritable
- Model
- Transformer
- PipelineStage
- Logging
- Params
- Serializable
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
Type Members
-
type
AnnotationContent = Seq[Row]
internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI
internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI
- Attributes
- protected
- Definition Classes
- AnnotatorModel
-
type
AnnotatorType = String
- Definition Classes
- HasOutputAnnotatorType
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
$[T](param: Param[T]): T
- Attributes
- protected
- Definition Classes
- Params
-
def
$$[T](feature: StructFeature[T]): T
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
$$[K, V](feature: MapFeature[K, V]): Map[K, V]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
$$[T](feature: SetFeature[T]): Set[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
$$[T](feature: ArrayFeature[T]): Array[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
_transform(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): DataFrame
- Attributes
- protected
- Definition Classes
- AnnotatorModel
-
def
afterAnnotate(dataset: DataFrame): DataFrame
- Attributes
- protected
- Definition Classes
- DocumentTokenSplitter → AnnotatorModel
-
def
annotate(annotations: Seq[Annotation]): Seq[Annotation]
Takes a Document and produces document splits based on a Tokenizers
Takes a Document and produces document splits based on a Tokenizers
- annotations
Annotations that correspond to inputAnnotationCols generated by previous annotators if any
- returns
any number of annotations processed for every input annotation. Not necessary one to one relationship
- Definition Classes
- DocumentTokenSplitter → HasSimpleAnnotate
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
beforeAnnotate(dataset: Dataset[_]): Dataset[_]
- Attributes
- protected
- Definition Classes
- AnnotatorModel
-
final
def
checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
final
def
clear(param: Param[_]): DocumentTokenSplitter.this.type
- Definition Classes
- Params
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
def
copy(extra: ParamMap): DocumentTokenSplitter
requirement for annotators copies
requirement for annotators copies
- Definition Classes
- RawAnnotator → Model → Transformer → PipelineStage → Params
-
def
copyValues[T <: Params](to: T, extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
-
final
def
defaultCopy[T <: Params](extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
-
def
dfAnnotate: UserDefinedFunction
Wraps annotate to happen inside SparkSQL user defined functions in order to act with org.apache.spark.sql.Column
Wraps annotate to happen inside SparkSQL user defined functions in order to act with org.apache.spark.sql.Column
- returns
udf function to be applied to inputCols using this annotator's annotate function as part of ML transformation
- Definition Classes
- HasSimpleAnnotate
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
explainParam(param: Param[_]): String
- Definition Classes
- Params
-
def
explainParams(): String
- Definition Classes
- Params
-
val
explodeSplits: BooleanParam
Whether to explode split chunks to separate rows
-
def
extraValidate(structType: StructType): Boolean
- Attributes
- protected
- Definition Classes
- RawAnnotator
-
def
extraValidateMsg: String
Override for additional custom schema checks
Override for additional custom schema checks
- Attributes
- protected
- Definition Classes
- RawAnnotator
-
final
def
extractParamMap(): ParamMap
- Definition Classes
- Params
-
final
def
extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
-
val
features: ArrayBuffer[Feature[_, _, _]]
- Definition Classes
- HasFeatures
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
def
get[T](feature: StructFeature[T]): Option[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
get[K, V](feature: MapFeature[K, V]): Option[Map[K, V]]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
get[T](feature: SetFeature[T]): Option[Set[T]]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
get[T](feature: ArrayFeature[T]): Option[Array[T]]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
- def getExplodeSplits: Boolean
-
def
getInputCols: Array[String]
- returns
input annotations columns currently used
- Definition Classes
- HasInputAnnotationCols
-
def
getLazyAnnotator: Boolean
- Definition Classes
- CanBeLazy
- def getNumTokens: Int
-
final
def
getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
-
final
def
getOutputCol: String
Gets annotation column name going to generate
Gets annotation column name going to generate
- Definition Classes
- HasOutputAnnotationCol
-
def
getParam(paramName: String): Param[Any]
- Definition Classes
- Params
- def getTokenOverlap: Int
- def getTrimWhitespace: Boolean
-
final
def
hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
-
def
hasParam(paramName: String): Boolean
- Definition Classes
- Params
-
def
hasParent: Boolean
- Definition Classes
- Model
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
def
initializeLogIfNecessary(isInterpreter: Boolean): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
val
inputAnnotatorTypes: Array[AnnotatorType]
Annotator reference id.
Annotator reference id. Used to identify elements in metadata or to refer to this annotator type
- Definition Classes
- DocumentTokenSplitter → HasInputAnnotationCols
-
final
val
inputCols: StringArrayParam
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
final
def
isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
isSet(param: Param[_]): Boolean
- Definition Classes
- Params
-
def
isTraceEnabled(): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
val
lazyAnnotator: BooleanParam
- Definition Classes
- CanBeLazy
- def lengthFromTokens(text: String): Int
-
def
log: Logger
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logName: String
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
msgHelper(schema: StructType): String
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
val
numTokens: IntParam
Limit of the number of tokens in a text
-
def
onWrite(path: String, spark: SparkSession): Unit
- Attributes
- protected
- Definition Classes
- ParamsAndFeaturesWritable
-
val
optionalInputAnnotatorTypes: Array[String]
- Definition Classes
- HasInputAnnotationCols
-
val
outputAnnotatorType: AnnotatorType
- Definition Classes
- DocumentTokenSplitter → HasOutputAnnotatorType
-
final
val
outputCol: Param[String]
- Attributes
- protected
- Definition Classes
- HasOutputAnnotationCol
-
lazy val
params: Array[Param[_]]
- Definition Classes
- Params
-
var
parent: Estimator[DocumentTokenSplitter]
- Definition Classes
- Model
-
def
save(path: String): Unit
- Definition Classes
- MLWritable
- Annotations
- @Since( "1.6.0" ) @throws( ... )
-
def
set[T](feature: StructFeature[T], value: T): DocumentTokenSplitter.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
set[K, V](feature: MapFeature[K, V], value: Map[K, V]): DocumentTokenSplitter.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
set[T](feature: SetFeature[T], value: Set[T]): DocumentTokenSplitter.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
set[T](feature: ArrayFeature[T], value: Array[T]): DocumentTokenSplitter.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
set(paramPair: ParamPair[_]): DocumentTokenSplitter.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set(param: String, value: Any): DocumentTokenSplitter.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set[T](param: Param[T], value: T): DocumentTokenSplitter.this.type
- Definition Classes
- Params
-
def
setDefault[T](feature: StructFeature[T], value: () ⇒ T): DocumentTokenSplitter.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
setDefault[K, V](feature: MapFeature[K, V], value: () ⇒ Map[K, V]): DocumentTokenSplitter.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
setDefault[T](feature: SetFeature[T], value: () ⇒ Set[T]): DocumentTokenSplitter.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
setDefault[T](feature: ArrayFeature[T], value: () ⇒ Array[T]): DocumentTokenSplitter.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
setDefault(paramPairs: ParamPair[_]*): DocumentTokenSplitter.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
setDefault[T](param: Param[T], value: T): DocumentTokenSplitter.this.type
- Attributes
- protected[org.apache.spark.ml]
- Definition Classes
- Params
- def setExplodeSplits(value: Boolean): DocumentTokenSplitter.this.type
-
final
def
setInputCols(value: String*): DocumentTokenSplitter.this.type
- Definition Classes
- HasInputAnnotationCols
-
def
setInputCols(value: Array[String]): DocumentTokenSplitter.this.type
Overrides required annotators column if different than default
Overrides required annotators column if different than default
- Definition Classes
- HasInputAnnotationCols
-
def
setLazyAnnotator(value: Boolean): DocumentTokenSplitter.this.type
- Definition Classes
- CanBeLazy
- def setNumTokens(value: Int): DocumentTokenSplitter.this.type
-
final
def
setOutputCol(value: String): DocumentTokenSplitter.this.type
Overrides annotation column name when transforming
Overrides annotation column name when transforming
- Definition Classes
- HasOutputAnnotationCol
-
def
setParent(parent: Estimator[DocumentTokenSplitter]): DocumentTokenSplitter
- Definition Classes
- Model
- def setTokenOverlap(value: Int): DocumentTokenSplitter.this.type
- def setTrimWhitespace(value: Boolean): DocumentTokenSplitter.this.type
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
-
val
tokenOverlap: IntParam
Length of the token overlap between text chunks (Default:
0
) -
final
def
transform(dataset: Dataset[_]): DataFrame
Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content
Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content
- dataset
Dataset[Row]
- Definition Classes
- AnnotatorModel → Transformer
-
def
transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame
- Definition Classes
- Transformer
- Annotations
- @Since( "2.0.0" )
-
def
transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame
- Definition Classes
- Transformer
- Annotations
- @Since( "2.0.0" ) @varargs()
-
final
def
transformSchema(schema: StructType): StructType
requirement for pipeline transformation validation.
requirement for pipeline transformation validation. It is called on fit()
- Definition Classes
- RawAnnotator → PipelineStage
-
def
transformSchema(schema: StructType, logging: Boolean): StructType
- Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
-
val
trimWhitespace: BooleanParam
Whether to trim whitespaces of extracted chunks (Default:
true
) -
val
uid: String
- Definition Classes
- DocumentTokenSplitter → Identifiable
-
def
validate(schema: StructType): Boolean
takes a Dataset and checks to see if all the required annotation types are present.
takes a Dataset and checks to see if all the required annotation types are present.
- schema
to be validated
- returns
True if all the required types are present, else false
- Attributes
- protected
- Definition Classes
- RawAnnotator
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
def
wrapColumnMetadata(col: Column): Column
- Attributes
- protected
- Definition Classes
- RawAnnotator
-
def
write: MLWriter
- Definition Classes
- ParamsAndFeaturesWritable → DefaultParamsWritable → MLWritable
Inherited from HasSimpleAnnotate[DocumentTokenSplitter]
Inherited from AnnotatorModel[DocumentTokenSplitter]
Inherited from CanBeLazy
Inherited from RawAnnotator[DocumentTokenSplitter]
Inherited from HasOutputAnnotationCol
Inherited from HasInputAnnotationCols
Inherited from HasOutputAnnotatorType
Inherited from ParamsAndFeaturesWritable
Inherited from HasFeatures
Inherited from DefaultParamsWritable
Inherited from MLWritable
Inherited from Model[DocumentTokenSplitter]
Inherited from Transformer
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Parameters
A list of (hyper-)parameter keys this annotator can take. Users can set and get the parameter values through setters and getters, respectively.