class TextMatcher extends AnnotatorApproach[TextMatcherModel] with ParamsAndFeaturesWritable
Annotator to match exact phrases (by token) provided in a file against a Document.
A text file of predefined phrases must be provided with setEntities
. The text file can als
be set directly as an ExternalResource.
For extended examples of usage, see the Examples and the TextMatcherTestSpec.
Example
In this example, the entities file is of the form
... dolore magna aliqua lorem ipsum dolor. sit laborum ...
where each line represents an entity phrase to be extracted.
import spark.implicits._ import com.johnsnowlabs.nlp.DocumentAssembler import com.johnsnowlabs.nlp.annotator.Tokenizer import com.johnsnowlabs.nlp.annotator.TextMatcher import com.johnsnowlabs.nlp.util.io.ReadAs import org.apache.spark.ml.Pipeline val documentAssembler = new DocumentAssembler() .setInputCol("text") .setOutputCol("document") val tokenizer = new Tokenizer() .setInputCols("document") .setOutputCol("token") val data = Seq("Hello dolore magna aliqua. Lorem ipsum dolor. sit in laborum").toDF("text") val entityExtractor = new TextMatcher() .setInputCols("document", "token") .setEntities("src/test/resources/entity-extractor/test-phrases.txt", ReadAs.TEXT) .setOutputCol("entity") .setCaseSensitive(false) .setTokenizer(tokenizer.fit(data)) val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, entityExtractor)) val results = pipeline.fit(data).transform(data) results.selectExpr("explode(entity) as result").show(false) +------------------------------------------------------------------------------------------+ |result | +------------------------------------------------------------------------------------------+ |[chunk, 6, 24, dolore magna aliqua, [entity -> entity, sentence -> 0, chunk -> 0], []] | |[chunk, 27, 48, Lorem ipsum dolor. sit, [entity -> entity, sentence -> 0, chunk -> 1], []]| |[chunk, 53, 59, laborum, [entity -> entity, sentence -> 0, chunk -> 2], []] | +------------------------------------------------------------------------------------------+
- See also
BigTextMatcher to match large amounts of text
- Grouped
- Alphabetic
- By Inheritance
- TextMatcher
- ParamsAndFeaturesWritable
- HasFeatures
- AnnotatorApproach
- CanBeLazy
- DefaultParamsWritable
- MLWritable
- HasOutputAnnotatorType
- HasOutputAnnotationCol
- HasInputAnnotationCols
- Estimator
- PipelineStage
- Logging
- Params
- Serializable
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
Type Members
-
type
AnnotatorType = String
- Definition Classes
- HasOutputAnnotatorType
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
$[T](param: Param[T]): T
- Attributes
- protected
- Definition Classes
- Params
-
def
$$[T](feature: StructFeature[T]): T
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
$$[K, V](feature: MapFeature[K, V]): Map[K, V]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
$$[T](feature: SetFeature[T]): Set[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
$$[T](feature: ArrayFeature[T]): Array[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
_fit(dataset: Dataset[_], recursiveStages: Option[PipelineModel]): TextMatcherModel
- Attributes
- protected
- Definition Classes
- AnnotatorApproach
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
beforeTraining(spark: SparkSession): Unit
- Definition Classes
- AnnotatorApproach
-
val
buildFromTokens: BooleanParam
Whether the TextMatcher should take the CHUNK from TOKEN or not (Default:
false
) -
val
caseSensitive: BooleanParam
Whether to match regardless of case (Default:
true
) -
final
def
checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
final
def
clear(param: Param[_]): TextMatcher.this.type
- Definition Classes
- Params
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
final
def
copy(extra: ParamMap): Estimator[TextMatcherModel]
- Definition Classes
- AnnotatorApproach → Estimator → PipelineStage → Params
-
def
copyValues[T <: Params](to: T, extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
-
final
def
defaultCopy[T <: Params](extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
-
val
description: String
Extracts entities from target dataset given in a text file
Extracts entities from target dataset given in a text file
- Definition Classes
- TextMatcher → AnnotatorApproach
-
val
entities: ExternalResourceParam
External resource for the entities, e.g.
External resource for the entities, e.g. a text file where each line is the string of an entity
-
val
entityValue: Param[String]
Value for the entity metadata field (Default:
"entity"
) -
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
explainParam(param: Param[_]): String
- Definition Classes
- Params
-
def
explainParams(): String
- Definition Classes
- Params
-
final
def
extractParamMap(): ParamMap
- Definition Classes
- Params
-
final
def
extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
-
val
features: ArrayBuffer[Feature[_, _, _]]
- Definition Classes
- HasFeatures
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
fit(dataset: Dataset[_]): TextMatcherModel
- Definition Classes
- AnnotatorApproach → Estimator
-
def
fit(dataset: Dataset[_], paramMaps: Seq[ParamMap]): Seq[TextMatcherModel]
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" )
-
def
fit(dataset: Dataset[_], paramMap: ParamMap): TextMatcherModel
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" )
-
def
fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): TextMatcherModel
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" ) @varargs()
-
def
get[T](feature: StructFeature[T]): Option[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
get[K, V](feature: MapFeature[K, V]): Option[Map[K, V]]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
get[T](feature: SetFeature[T]): Option[Set[T]]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
get[T](feature: ArrayFeature[T]): Option[Array[T]]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
def
getBuildFromTokens: Boolean
Getter for buildFromTokens param
-
def
getCaseSensitive: Boolean
Whether to match regardless of case (Default:
true
) -
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
def
getEntityValue: String
Getter for Value for the entity metadata field
-
def
getInputCols: Array[String]
- returns
input annotations columns currently used
- Definition Classes
- HasInputAnnotationCols
-
def
getLazyAnnotator: Boolean
- Definition Classes
- CanBeLazy
-
def
getMergeOverlapping: Boolean
Whether to merge overlapping matched chunks (Default:
false
) -
final
def
getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
-
final
def
getOutputCol: String
Gets annotation column name going to generate
Gets annotation column name going to generate
- Definition Classes
- HasOutputAnnotationCol
-
def
getParam(paramName: String): Param[Any]
- Definition Classes
- Params
-
def
getTokenizer: TokenizerModel
The Tokenizer to perform tokenization with
-
final
def
hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
-
def
hasParam(paramName: String): Boolean
- Definition Classes
- Params
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
def
initializeLogIfNecessary(isInterpreter: Boolean): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
val
inputAnnotatorTypes: Array[String]
Output annotator type : DOCUMENT, TOKEN
Output annotator type : DOCUMENT, TOKEN
- Definition Classes
- TextMatcher → HasInputAnnotationCols
-
final
val
inputCols: StringArrayParam
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
final
def
isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
isSet(param: Param[_]): Boolean
- Definition Classes
- Params
-
def
isTraceEnabled(): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
val
lazyAnnotator: BooleanParam
- Definition Classes
- CanBeLazy
-
def
log: Logger
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logName: String
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
val
mergeOverlapping: BooleanParam
Whether to merge overlapping matched chunks (Default:
false
) -
def
msgHelper(schema: StructType): String
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
onTrained(model: TextMatcherModel, spark: SparkSession): Unit
- Definition Classes
- AnnotatorApproach
-
def
onWrite(path: String, spark: SparkSession): Unit
- Attributes
- protected
- Definition Classes
- ParamsAndFeaturesWritable
-
val
optionalInputAnnotatorTypes: Array[String]
- Definition Classes
- HasInputAnnotationCols
-
val
outputAnnotatorType: AnnotatorType
Output annotator type : CHUNK
Output annotator type : CHUNK
- Definition Classes
- TextMatcher → HasOutputAnnotatorType
-
final
val
outputCol: Param[String]
- Attributes
- protected
- Definition Classes
- HasOutputAnnotationCol
-
lazy val
params: Array[Param[_]]
- Definition Classes
- Params
-
def
save(path: String): Unit
- Definition Classes
- MLWritable
- Annotations
- @Since( "1.6.0" ) @throws( ... )
-
def
set[T](feature: StructFeature[T], value: T): TextMatcher.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
set[K, V](feature: MapFeature[K, V], value: Map[K, V]): TextMatcher.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
set[T](feature: SetFeature[T], value: Set[T]): TextMatcher.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
set[T](feature: ArrayFeature[T], value: Array[T]): TextMatcher.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
set(paramPair: ParamPair[_]): TextMatcher.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set(param: String, value: Any): TextMatcher.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set[T](param: Param[T], value: T): TextMatcher.this.type
- Definition Classes
- Params
-
def
setBuildFromTokens(v: Boolean): TextMatcher.this.type
Setter for buildFromTokens param
-
def
setCaseSensitive(v: Boolean): TextMatcher.this.type
Whether to match regardless of case (Default:
true
) -
def
setDefault[T](feature: StructFeature[T], value: () ⇒ T): TextMatcher.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
setDefault[K, V](feature: MapFeature[K, V], value: () ⇒ Map[K, V]): TextMatcher.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
setDefault[T](feature: SetFeature[T], value: () ⇒ Set[T]): TextMatcher.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
setDefault[T](feature: ArrayFeature[T], value: () ⇒ Array[T]): TextMatcher.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
setDefault(paramPairs: ParamPair[_]*): TextMatcher.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
setDefault[T](param: Param[T], value: T): TextMatcher.this.type
- Attributes
- protected[org.apache.spark.ml]
- Definition Classes
- Params
-
def
setEntities(path: String, readAs: Format, options: Map[String, String] = Map("format" -> "text")): TextMatcher.this.type
Provides a file with phrases to match.
Provides a file with phrases to match. Default: Looks up path in configuration.
- path
a path to a file that contains the entities in the specified format.
- readAs
the format of the file, can be one of {ReadAs.TEXT, ReadAs.SPARK}. Defaults to ReadAs.TEXT.
- options
a map of additional parameters. Defaults to
Map("format" -> "text")
.- returns
this
-
def
setEntities(value: ExternalResource): TextMatcher.this.type
Provides a file with phrases to match (Default: Looks up path in configuration)
-
def
setEntityValue(v: String): TextMatcher.this.type
Setter for Value for the entity metadata field
-
final
def
setInputCols(value: String*): TextMatcher.this.type
- Definition Classes
- HasInputAnnotationCols
-
def
setInputCols(value: Array[String]): TextMatcher.this.type
Overrides required annotators column if different than default
Overrides required annotators column if different than default
- Definition Classes
- HasInputAnnotationCols
-
def
setLazyAnnotator(value: Boolean): TextMatcher.this.type
- Definition Classes
- CanBeLazy
-
def
setMergeOverlapping(v: Boolean): TextMatcher.this.type
Whether to merge overlapping matched chunks (Default:
false
) -
final
def
setOutputCol(value: String): TextMatcher.this.type
Overrides annotation column name when transforming
Overrides annotation column name when transforming
- Definition Classes
- HasOutputAnnotationCol
-
def
setTokenizer(tokenizer: TokenizerModel): TextMatcher.this.type
The Tokenizer to perform tokenization with
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
-
val
tokenizer: StructFeature[TokenizerModel]
The Tokenizer to perform tokenization with
-
def
train(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): TextMatcherModel
- Definition Classes
- TextMatcher → AnnotatorApproach
-
final
def
transformSchema(schema: StructType): StructType
requirement for pipeline transformation validation.
requirement for pipeline transformation validation. It is called on fit()
- Definition Classes
- AnnotatorApproach → PipelineStage
-
def
transformSchema(schema: StructType, logging: Boolean): StructType
- Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
-
val
uid: String
- Definition Classes
- TextMatcher → Identifiable
-
def
validate(schema: StructType): Boolean
takes a Dataset and checks to see if all the required annotation types are present.
takes a Dataset and checks to see if all the required annotation types are present.
- schema
to be validated
- returns
True if all the required types are present, else false
- Attributes
- protected
- Definition Classes
- AnnotatorApproach
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
def
write: MLWriter
- Definition Classes
- ParamsAndFeaturesWritable → DefaultParamsWritable → MLWritable
Inherited from ParamsAndFeaturesWritable
Inherited from HasFeatures
Inherited from AnnotatorApproach[TextMatcherModel]
Inherited from CanBeLazy
Inherited from DefaultParamsWritable
Inherited from MLWritable
Inherited from HasOutputAnnotatorType
Inherited from HasOutputAnnotationCol
Inherited from HasInputAnnotationCols
Inherited from Estimator[TextMatcherModel]
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Annotator types
Required input and expected output annotator types
Parameters
A list of (hyper-)parameter keys this annotator can take. Users can set and get the parameter values through setters and getters, respectively.