Packages

class NGramGenerator extends AnnotatorModel[NGramGenerator] with HasSimpleAnnotate[NGramGenerator]

A feature transformer that converts the input array of strings (annotatorType TOKEN) into an array of n-grams (annotatorType CHUNK). Null values in the input array are ignored. It returns an array of n-grams where each n-gram is represented by a space-separated string of words.

When the input is empty, an empty array is returned. When the input array length is less than n (number of elements per n-gram), no n-grams are returned.

For more extended examples see the Examples and the NGramGeneratorTestSpec.

Example

import spark.implicits._
import com.johnsnowlabs.nlp.base.DocumentAssembler
import com.johnsnowlabs.nlp.annotator.SentenceDetector
import com.johnsnowlabs.nlp.annotators.Tokenizer
import com.johnsnowlabs.nlp.annotators.NGramGenerator
import org.apache.spark.ml.Pipeline

val documentAssembler = new DocumentAssembler()
  .setInputCol("text")
  .setOutputCol("document")

val sentence = new SentenceDetector()
  .setInputCols("document")
  .setOutputCol("sentence")

val tokenizer = new Tokenizer()
  .setInputCols(Array("sentence"))
  .setOutputCol("token")

val nGrams = new NGramGenerator()
  .setInputCols("token")
  .setOutputCol("ngrams")
  .setN(2)

val pipeline = new Pipeline().setStages(Array(
    documentAssembler,
    sentence,
    tokenizer,
    nGrams
  ))

val data = Seq("This is my sentence.").toDF("text")
val results = pipeline.fit(data).transform(data)

results.selectExpr("explode(ngrams) as result").show(false)
+------------------------------------------------------------+
|result                                                      |
+------------------------------------------------------------+
|[chunk, 0, 6, This is, [sentence -> 0, chunk -> 0], []]     |
|[chunk, 5, 9, is my, [sentence -> 0, chunk -> 1], []]       |
|[chunk, 8, 18, my sentence, [sentence -> 0, chunk -> 2], []]|
|[chunk, 11, 19, sentence ., [sentence -> 0, chunk -> 3], []]|
+------------------------------------------------------------+
Linear Supertypes
HasSimpleAnnotate[NGramGenerator], AnnotatorModel[NGramGenerator], CanBeLazy, RawAnnotator[NGramGenerator], HasOutputAnnotationCol, HasInputAnnotationCols, HasOutputAnnotatorType, ParamsAndFeaturesWritable, HasFeatures, DefaultParamsWritable, MLWritable, Model[NGramGenerator], Transformer, PipelineStage, Logging, Params, Serializable, Serializable, Identifiable, AnyRef, Any
Ordering
  1. Grouped
  2. Alphabetic
  3. By Inheritance
Inherited
  1. NGramGenerator
  2. HasSimpleAnnotate
  3. AnnotatorModel
  4. CanBeLazy
  5. RawAnnotator
  6. HasOutputAnnotationCol
  7. HasInputAnnotationCols
  8. HasOutputAnnotatorType
  9. ParamsAndFeaturesWritable
  10. HasFeatures
  11. DefaultParamsWritable
  12. MLWritable
  13. Model
  14. Transformer
  15. PipelineStage
  16. Logging
  17. Params
  18. Serializable
  19. Serializable
  20. Identifiable
  21. AnyRef
  22. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new NGramGenerator()
  2. new NGramGenerator(uid: String)

Type Members

  1. type AnnotationContent = Seq[Row]

    internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI

    internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI

    Attributes
    protected
    Definition Classes
    AnnotatorModel
  2. type AnnotatorType = String
    Definition Classes
    HasOutputAnnotatorType

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def $[T](param: Param[T]): T
    Attributes
    protected
    Definition Classes
    Params
  4. def $$[T](feature: StructFeature[T]): T
    Attributes
    protected
    Definition Classes
    HasFeatures
  5. def $$[K, V](feature: MapFeature[K, V]): Map[K, V]
    Attributes
    protected
    Definition Classes
    HasFeatures
  6. def $$[T](feature: SetFeature[T]): Set[T]
    Attributes
    protected
    Definition Classes
    HasFeatures
  7. def $$[T](feature: ArrayFeature[T]): Array[T]
    Attributes
    protected
    Definition Classes
    HasFeatures
  8. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  9. def _transform(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): DataFrame
    Attributes
    protected
    Definition Classes
    AnnotatorModel
  10. def afterAnnotate(dataset: DataFrame): DataFrame
    Attributes
    protected
    Definition Classes
    AnnotatorModel
  11. def annotate(annotations: Seq[Annotation]): Seq[Annotation]

    takes a document and annotations and produces new annotations of this annotator's annotation type

    takes a document and annotations and produces new annotations of this annotator's annotation type

    annotations

    Annotations that correspond to inputAnnotationCols generated by previous annotators if any

    returns

    any number of annotations processed for every input annotation. Not necessary one to one relationship

    Definition Classes
    NGramGeneratorHasSimpleAnnotate
  12. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  13. def beforeAnnotate(dataset: Dataset[_]): Dataset[_]
    Attributes
    protected
    Definition Classes
    AnnotatorModel
  14. final def checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
    Attributes
    protected
    Definition Classes
    HasInputAnnotationCols
  15. final def clear(param: Param[_]): NGramGenerator.this.type
    Definition Classes
    Params
  16. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  17. def copy(extra: ParamMap): NGramGenerator

    requirement for annotators copies

    requirement for annotators copies

    Definition Classes
    RawAnnotator → Model → Transformer → PipelineStage → Params
  18. def copyValues[T <: Params](to: T, extra: ParamMap): T
    Attributes
    protected
    Definition Classes
    Params
  19. final def defaultCopy[T <: Params](extra: ParamMap): T
    Attributes
    protected
    Definition Classes
    Params
  20. val delimiter: Param[String]

    Glue character used to join the tokens (Default: " ")

  21. def dfAnnotate: UserDefinedFunction

    Wraps annotate to happen inside SparkSQL user defined functions in order to act with org.apache.spark.sql.Column

    Wraps annotate to happen inside SparkSQL user defined functions in order to act with org.apache.spark.sql.Column

    returns

    udf function to be applied to inputCols using this annotator's annotate function as part of ML transformation

    Definition Classes
    HasSimpleAnnotate
  22. val enableCumulative: BooleanParam

    Whether to calculate just the actual n-grams or all n-grams from 1 through n (Default: false)

  23. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  24. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  25. def explainParam(param: Param[_]): String
    Definition Classes
    Params
  26. def explainParams(): String
    Definition Classes
    Params
  27. def extraValidate(structType: StructType): Boolean
    Attributes
    protected
    Definition Classes
    RawAnnotator
  28. def extraValidateMsg: String

    Override for additional custom schema checks

    Override for additional custom schema checks

    Attributes
    protected
    Definition Classes
    RawAnnotator
  29. final def extractParamMap(): ParamMap
    Definition Classes
    Params
  30. final def extractParamMap(extra: ParamMap): ParamMap
    Definition Classes
    Params
  31. val features: ArrayBuffer[Feature[_, _, _]]
    Definition Classes
    HasFeatures
  32. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  33. def get[T](feature: StructFeature[T]): Option[T]
    Attributes
    protected
    Definition Classes
    HasFeatures
  34. def get[K, V](feature: MapFeature[K, V]): Option[Map[K, V]]
    Attributes
    protected
    Definition Classes
    HasFeatures
  35. def get[T](feature: SetFeature[T]): Option[Set[T]]
    Attributes
    protected
    Definition Classes
    HasFeatures
  36. def get[T](feature: ArrayFeature[T]): Option[Array[T]]
    Attributes
    protected
    Definition Classes
    HasFeatures
  37. final def get[T](param: Param[T]): Option[T]
    Definition Classes
    Params
  38. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  39. final def getDefault[T](param: Param[T]): Option[T]
    Definition Classes
    Params
  40. def getDelimiter: String

    Glue character used to join the tokens (Default: " ")

  41. def getEnableCumulative: Boolean

    Whether to calculate just the actual n-grams or all n-grams from 1 through n (Default: false)

  42. def getInputCols: Array[String]

    returns

    input annotations columns currently used

    Definition Classes
    HasInputAnnotationCols
  43. def getLazyAnnotator: Boolean
    Definition Classes
    CanBeLazy
  44. def getN: Int

    Number elements per n-gram (>=1) (Default: 2)

  45. final def getOrDefault[T](param: Param[T]): T
    Definition Classes
    Params
  46. final def getOutputCol: String

    Gets annotation column name going to generate

    Gets annotation column name going to generate

    Definition Classes
    HasOutputAnnotationCol
  47. def getParam(paramName: String): Param[Any]
    Definition Classes
    Params
  48. final def hasDefault[T](param: Param[T]): Boolean
    Definition Classes
    Params
  49. def hasParam(paramName: String): Boolean
    Definition Classes
    Params
  50. def hasParent: Boolean
    Definition Classes
    Model
  51. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  52. def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
    Attributes
    protected
    Definition Classes
    Logging
  53. def initializeLogIfNecessary(isInterpreter: Boolean): Unit
    Attributes
    protected
    Definition Classes
    Logging
  54. val inputAnnotatorTypes: Array[AnnotatorType]

    Input annotator type : TOKEN

    Input annotator type : TOKEN

    Definition Classes
    NGramGeneratorHasInputAnnotationCols
  55. final val inputCols: StringArrayParam

    columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified

    columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified

    Attributes
    protected
    Definition Classes
    HasInputAnnotationCols
  56. final def isDefined(param: Param[_]): Boolean
    Definition Classes
    Params
  57. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  58. final def isSet(param: Param[_]): Boolean
    Definition Classes
    Params
  59. def isTraceEnabled(): Boolean
    Attributes
    protected
    Definition Classes
    Logging
  60. val lazyAnnotator: BooleanParam
    Definition Classes
    CanBeLazy
  61. def log: Logger
    Attributes
    protected
    Definition Classes
    Logging
  62. def logDebug(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  63. def logDebug(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  64. def logError(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  65. def logError(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  66. def logInfo(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  67. def logInfo(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  68. def logName: String
    Attributes
    protected
    Definition Classes
    Logging
  69. def logTrace(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  70. def logTrace(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  71. def logWarning(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  72. def logWarning(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  73. def msgHelper(schema: StructType): String
    Attributes
    protected
    Definition Classes
    HasInputAnnotationCols
  74. val n: IntParam

    Minimum n-gram length, greater than or equal to 1 (Default: 2, bigram features)

  75. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  76. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  77. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  78. def onWrite(path: String, spark: SparkSession): Unit
    Attributes
    protected
    Definition Classes
    ParamsAndFeaturesWritable
  79. val optionalInputAnnotatorTypes: Array[String]
    Definition Classes
    HasInputAnnotationCols
  80. val outputAnnotatorType: AnnotatorType

    Output annotator type : CHUNK

    Output annotator type : CHUNK

    Definition Classes
    NGramGeneratorHasOutputAnnotatorType
  81. final val outputCol: Param[String]
    Attributes
    protected
    Definition Classes
    HasOutputAnnotationCol
  82. lazy val params: Array[Param[_]]
    Definition Classes
    Params
  83. var parent: Estimator[NGramGenerator]
    Definition Classes
    Model
  84. def save(path: String): Unit
    Definition Classes
    MLWritable
    Annotations
    @Since( "1.6.0" ) @throws( ... )
  85. def set[T](feature: StructFeature[T], value: T): NGramGenerator.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  86. def set[K, V](feature: MapFeature[K, V], value: Map[K, V]): NGramGenerator.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  87. def set[T](feature: SetFeature[T], value: Set[T]): NGramGenerator.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  88. def set[T](feature: ArrayFeature[T], value: Array[T]): NGramGenerator.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  89. final def set(paramPair: ParamPair[_]): NGramGenerator.this.type
    Attributes
    protected
    Definition Classes
    Params
  90. final def set(param: String, value: Any): NGramGenerator.this.type
    Attributes
    protected
    Definition Classes
    Params
  91. final def set[T](param: Param[T], value: T): NGramGenerator.this.type
    Definition Classes
    Params
  92. def setDefault[T](feature: StructFeature[T], value: () ⇒ T): NGramGenerator.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  93. def setDefault[K, V](feature: MapFeature[K, V], value: () ⇒ Map[K, V]): NGramGenerator.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  94. def setDefault[T](feature: SetFeature[T], value: () ⇒ Set[T]): NGramGenerator.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  95. def setDefault[T](feature: ArrayFeature[T], value: () ⇒ Array[T]): NGramGenerator.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  96. final def setDefault(paramPairs: ParamPair[_]*): NGramGenerator.this.type
    Attributes
    protected
    Definition Classes
    Params
  97. final def setDefault[T](param: Param[T], value: T): NGramGenerator.this.type
    Attributes
    protected[org.apache.spark.ml]
    Definition Classes
    Params
  98. def setDelimiter(value: String): NGramGenerator.this.type

    Glue character used to join the tokens (Default: " ")

  99. def setEnableCumulative(value: Boolean): NGramGenerator.this.type

    Whether to calculate just the actual n-grams or all n-grams from 1 through n (Default: false)

  100. final def setInputCols(value: String*): NGramGenerator.this.type
    Definition Classes
    HasInputAnnotationCols
  101. def setInputCols(value: Array[String]): NGramGenerator.this.type

    Overrides required annotators column if different than default

    Overrides required annotators column if different than default

    Definition Classes
    HasInputAnnotationCols
  102. def setLazyAnnotator(value: Boolean): NGramGenerator.this.type
    Definition Classes
    CanBeLazy
  103. def setN(value: Int): NGramGenerator.this.type

    Number elements per n-gram (>=1) (Default: 2)

  104. final def setOutputCol(value: String): NGramGenerator.this.type

    Overrides annotation column name when transforming

    Overrides annotation column name when transforming

    Definition Classes
    HasOutputAnnotationCol
  105. def setParent(parent: Estimator[NGramGenerator]): NGramGenerator
    Definition Classes
    Model
  106. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  107. def toString(): String
    Definition Classes
    Identifiable → AnyRef → Any
  108. final def transform(dataset: Dataset[_]): DataFrame

    Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content

    Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content

    dataset

    Dataset[Row]

    Definition Classes
    AnnotatorModel → Transformer
  109. def transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame
    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" )
  110. def transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame
    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" ) @varargs()
  111. final def transformSchema(schema: StructType): StructType

    requirement for pipeline transformation validation.

    requirement for pipeline transformation validation. It is called on fit()

    Definition Classes
    RawAnnotator → PipelineStage
  112. def transformSchema(schema: StructType, logging: Boolean): StructType
    Attributes
    protected
    Definition Classes
    PipelineStage
    Annotations
    @DeveloperApi()
  113. val uid: String
    Definition Classes
    NGramGenerator → Identifiable
  114. def validate(schema: StructType): Boolean

    takes a Dataset and checks to see if all the required annotation types are present.

    takes a Dataset and checks to see if all the required annotation types are present.

    schema

    to be validated

    returns

    True if all the required types are present, else false

    Attributes
    protected
    Definition Classes
    RawAnnotator
  115. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  116. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  117. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  118. def wrapColumnMetadata(col: Column): Column
    Attributes
    protected
    Definition Classes
    RawAnnotator
  119. def write: MLWriter
    Definition Classes
    ParamsAndFeaturesWritable → DefaultParamsWritable → MLWritable

Inherited from AnnotatorModel[NGramGenerator]

Inherited from CanBeLazy

Inherited from RawAnnotator[NGramGenerator]

Inherited from HasOutputAnnotationCol

Inherited from HasInputAnnotationCols

Inherited from HasOutputAnnotatorType

Inherited from ParamsAndFeaturesWritable

Inherited from HasFeatures

Inherited from DefaultParamsWritable

Inherited from MLWritable

Inherited from Model[NGramGenerator]

Inherited from Transformer

Inherited from PipelineStage

Inherited from Logging

Inherited from Params

Inherited from Serializable

Inherited from Serializable

Inherited from Identifiable

Inherited from AnyRef

Inherited from Any

Parameters

A list of (hyper-)parameter keys this annotator can take. Users can set and get the parameter values through setters and getters, respectively.

Annotator types

Required input and expected output annotator types

Members

Parameter setters

Parameter getters