class Lemmatizer extends AnnotatorApproach[LemmatizerModel]
Class to find lemmas out of words with the objective of returning a base dictionary word.
Retrieves the significant part of a word. A dictionary of predefined lemmas must be provided
with setDictionary
. The dictionary can be set in either in the form of a delimited text file
or directly as an ExternalResource.
Pretrained models can be loaded with LemmatizerModel.pretrained.
For available pretrained models please see the Models Hub. For extended examples of usage, see the Examples and the LemmatizerTestSpec.
Example
In this example, the lemma dictionary lemmas_small.txt
has the form of
... pick -> pick picks picking picked peck -> peck pecking pecked pecks pickle -> pickle pickles pickled pickling pepper -> pepper peppers peppered peppering ...
where each key is delimited by ->
and values are delimited by \t
import spark.implicits._ import com.johnsnowlabs.nlp.DocumentAssembler import com.johnsnowlabs.nlp.annotator.Tokenizer import com.johnsnowlabs.nlp.annotator.SentenceDetector import com.johnsnowlabs.nlp.annotators.Lemmatizer import org.apache.spark.ml.Pipeline val documentAssembler = new DocumentAssembler() .setInputCol("text") .setOutputCol("document") val sentenceDetector = new SentenceDetector() .setInputCols(Array("document")) .setOutputCol("sentence") val tokenizer = new Tokenizer() .setInputCols(Array("sentence")) .setOutputCol("token") val lemmatizer = new Lemmatizer() .setInputCols(Array("token")) .setOutputCol("lemma") .setDictionary("src/test/resources/lemma-corpus-small/lemmas_small.txt", "->", "\t") val pipeline = new Pipeline() .setStages(Array( documentAssembler, sentenceDetector, tokenizer, lemmatizer )) val data = Seq("Peter Pipers employees are picking pecks of pickled peppers.") .toDF("text") val result = pipeline.fit(data).transform(data) result.selectExpr("lemma.result").show(false) +------------------------------------------------------------------+ |result | +------------------------------------------------------------------+ |[Peter, Pipers, employees, are, pick, peck, of, pickle, pepper, .]| +------------------------------------------------------------------+
- See also
LemmatizerModel for the instantiated model and pretrained models.
- Grouped
- Alphabetic
- By Inheritance
- Lemmatizer
- AnnotatorApproach
- CanBeLazy
- DefaultParamsWritable
- MLWritable
- HasOutputAnnotatorType
- HasOutputAnnotationCol
- HasInputAnnotationCols
- Estimator
- PipelineStage
- Logging
- Params
- Serializable
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
Type Members
-
type
AnnotatorType = String
- Definition Classes
- HasOutputAnnotatorType
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
$[T](param: Param[T]): T
- Attributes
- protected
- Definition Classes
- Params
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
_fit(dataset: Dataset[_], recursiveStages: Option[PipelineModel]): LemmatizerModel
- Attributes
- protected
- Definition Classes
- AnnotatorApproach
- def arraysZip: UserDefinedFunction
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
beforeTraining(spark: SparkSession): Unit
- Definition Classes
- AnnotatorApproach
-
final
def
checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
final
def
clear(param: Param[_]): Lemmatizer.this.type
- Definition Classes
- Params
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
final
def
copy(extra: ParamMap): Estimator[LemmatizerModel]
- Definition Classes
- AnnotatorApproach → Estimator → PipelineStage → Params
-
def
copyValues[T <: Params](to: T, extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
-
final
def
defaultCopy[T <: Params](extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
-
val
description: String
Retrieves the significant part of a word
Retrieves the significant part of a word
- Definition Classes
- Lemmatizer → AnnotatorApproach
-
val
dictionary: ExternalResourceParam
External dictionary to be used by the lemmatizer, which needs '
keyDelimiter
' and 'valueDelimiter
' for parsing the resourceExternal dictionary to be used by the lemmatizer, which needs '
keyDelimiter
' and 'valueDelimiter
' for parsing the resourceExample
... pick -> pick picks picking picked peck -> peck pecking pecked pecks pickle -> pickle pickles pickled pickling pepper -> pepper peppers peppered peppering ...
where each key is delimited by
->
and values are delimited by\t
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
explainParam(param: Param[_]): String
- Definition Classes
- Params
-
def
explainParams(): String
- Definition Classes
- Params
-
final
def
extractParamMap(): ParamMap
- Definition Classes
- Params
-
final
def
extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
fit(dataset: Dataset[_]): LemmatizerModel
- Definition Classes
- AnnotatorApproach → Estimator
-
def
fit(dataset: Dataset[_], paramMaps: Seq[ParamMap]): Seq[LemmatizerModel]
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" )
-
def
fit(dataset: Dataset[_], paramMap: ParamMap): LemmatizerModel
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" )
-
def
fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): LemmatizerModel
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" ) @varargs()
-
val
formCol: Param[String]
Column that correspends to CoNLLU(formCol=) output
-
final
def
get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
def
getDictionary: ExternalResource
External dictionary to be used by the lemmatizer
- def getFormCol: String
-
def
getInputCols: Array[String]
- returns
input annotations columns currently used
- Definition Classes
- HasInputAnnotationCols
-
def
getLazyAnnotator: Boolean
- Definition Classes
- CanBeLazy
- def getLemmaCol: String
-
final
def
getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
-
final
def
getOutputCol: String
Gets annotation column name going to generate
Gets annotation column name going to generate
- Definition Classes
- HasOutputAnnotationCol
-
def
getParam(paramName: String): Param[Any]
- Definition Classes
- Params
-
final
def
hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
-
def
hasParam(paramName: String): Boolean
- Definition Classes
- Params
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
def
initializeLogIfNecessary(isInterpreter: Boolean): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
val
inputAnnotatorTypes: Array[AnnotatorType]
Input annotator type : TOKEN
Input annotator type : TOKEN
- Definition Classes
- Lemmatizer → HasInputAnnotationCols
-
final
val
inputCols: StringArrayParam
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
final
def
isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
isSet(param: Param[_]): Boolean
- Definition Classes
- Params
-
def
isTraceEnabled(): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
val
lazyAnnotator: BooleanParam
- Definition Classes
- CanBeLazy
-
val
lemmaCol: Param[String]
Column that correspends to CoNLLU(lemmaCol=) output
-
def
log: Logger
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logName: String
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
msgHelper(schema: StructType): String
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
onTrained(model: LemmatizerModel, spark: SparkSession): Unit
- Definition Classes
- AnnotatorApproach
-
val
optionalInputAnnotatorTypes: Array[String]
- Definition Classes
- HasInputAnnotationCols
-
val
outputAnnotatorType: AnnotatorType
Output annotator type : TOKEN
Output annotator type : TOKEN
- Definition Classes
- Lemmatizer → HasOutputAnnotatorType
-
final
val
outputCol: Param[String]
- Attributes
- protected
- Definition Classes
- HasOutputAnnotationCol
-
lazy val
params: Array[Param[_]]
- Definition Classes
- Params
-
def
save(path: String): Unit
- Definition Classes
- MLWritable
- Annotations
- @Since( "1.6.0" ) @throws( ... )
-
final
def
set(paramPair: ParamPair[_]): Lemmatizer.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set(param: String, value: Any): Lemmatizer.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set[T](param: Param[T], value: T): Lemmatizer.this.type
- Definition Classes
- Params
-
final
def
setDefault(paramPairs: ParamPair[_]*): Lemmatizer.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
setDefault[T](param: Param[T], value: T): Lemmatizer.this.type
- Attributes
- protected[org.apache.spark.ml]
- Definition Classes
- Params
-
def
setDictionary(path: String, keyDelimiter: String, valueDelimiter: String, readAs: Format = ReadAs.TEXT, options: Map[String, String] = Map("format" -> "text")): Lemmatizer.this.type
External dictionary to be used by the lemmatizer, which needs
keyDelimiter
andvalueDelimiter
for parsing the resource -
def
setDictionary(value: ExternalResource): Lemmatizer.this.type
External dictionary already in the form of ExternalResource, for which the Map member
options
has entries defined for"keyDelimiter"
and"valueDelimiter"
.External dictionary already in the form of ExternalResource, for which the Map member
options
has entries defined for"keyDelimiter"
and"valueDelimiter"
.Example
val resource = ExternalResource( "src/test/resources/regex-matcher/rules.txt", ReadAs.TEXT, Map("keyDelimiter" -> "->", "valueDelimiter" -> "\t") ) val lemmatizer = new Lemmatizer() .setInputCols(Array("token")) .setOutputCol("lemma") .setDictionary(resource)
- def setFormCol(value: String): Lemmatizer.this.type
-
final
def
setInputCols(value: String*): Lemmatizer.this.type
- Definition Classes
- HasInputAnnotationCols
-
def
setInputCols(value: Array[String]): Lemmatizer.this.type
Overrides required annotators column if different than default
Overrides required annotators column if different than default
- Definition Classes
- HasInputAnnotationCols
-
def
setLazyAnnotator(value: Boolean): Lemmatizer.this.type
- Definition Classes
- CanBeLazy
- def setLemmaCol(value: String): Lemmatizer.this.type
-
final
def
setOutputCol(value: String): Lemmatizer.this.type
Overrides annotation column name when transforming
Overrides annotation column name when transforming
- Definition Classes
- HasOutputAnnotationCol
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
-
def
train(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): LemmatizerModel
- Definition Classes
- Lemmatizer → AnnotatorApproach
-
final
def
transformSchema(schema: StructType): StructType
requirement for pipeline transformation validation.
requirement for pipeline transformation validation. It is called on fit()
- Definition Classes
- AnnotatorApproach → PipelineStage
-
def
transformSchema(schema: StructType, logging: Boolean): StructType
- Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
-
val
uid: String
- Definition Classes
- Lemmatizer → Identifiable
-
def
validate(schema: StructType): Boolean
takes a Dataset and checks to see if all the required annotation types are present.
takes a Dataset and checks to see if all the required annotation types are present.
- schema
to be validated
- returns
True if all the required types are present, else false
- Attributes
- protected
- Definition Classes
- AnnotatorApproach
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
def
write: MLWriter
- Definition Classes
- DefaultParamsWritable → MLWritable
Inherited from AnnotatorApproach[LemmatizerModel]
Inherited from CanBeLazy
Inherited from DefaultParamsWritable
Inherited from MLWritable
Inherited from HasOutputAnnotatorType
Inherited from HasOutputAnnotationCol
Inherited from HasInputAnnotationCols
Inherited from Estimator[LemmatizerModel]
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Annotator types
Required input and expected output annotator types
Parameters
A list of (hyper-)parameter keys this annotator can take. Users can set and get the parameter values through setters and getters, respectively.