class Normalizer extends AnnotatorApproach[NormalizerModel]
Annotator that cleans out tokens. Requires stems, hence tokens. Removes all dirty characters from text following a regex pattern and transforms words based on a provided dictionary
For extended examples of usage, see the Examples.
Example
import spark.implicits._ import com.johnsnowlabs.nlp.DocumentAssembler import com.johnsnowlabs.nlp.annotator.{Normalizer, Tokenizer} import org.apache.spark.ml.Pipeline val documentAssembler = new DocumentAssembler() .setInputCol("text") .setOutputCol("document") val tokenizer = new Tokenizer() .setInputCols("document") .setOutputCol("token") val normalizer = new Normalizer() .setInputCols("token") .setOutputCol("normalized") .setLowercase(true) .setCleanupPatterns(Array("""[^\w\d\s]""")) // remove punctuations (keep alphanumeric chars) // if we don't set CleanupPatterns, it will only keep alphabet letters ([^A-Za-z]) val pipeline = new Pipeline().setStages(Array( documentAssembler, tokenizer, normalizer )) val data = Seq("John and Peter are brothers. However they don't support each other that much.") .toDF("text") val result = pipeline.fit(data).transform(data) result.selectExpr("normalized.result").show(truncate = false) +----------------------------------------------------------------------------------------+ |result | +----------------------------------------------------------------------------------------+ |[john, and, peter, are, brothers, however, they, dont, support, each, other, that, much]| +----------------------------------------------------------------------------------------+
- Grouped
- Alphabetic
- By Inheritance
- Normalizer
- AnnotatorApproach
- CanBeLazy
- DefaultParamsWritable
- MLWritable
- HasOutputAnnotatorType
- HasOutputAnnotationCol
- HasInputAnnotationCols
- Estimator
- PipelineStage
- Logging
- Params
- Serializable
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
Type Members
-
type
AnnotatorType = String
- Definition Classes
- HasOutputAnnotatorType
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
$[T](param: Param[T]): T
- Attributes
- protected
- Definition Classes
- Params
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
_fit(dataset: Dataset[_], recursiveStages: Option[PipelineModel]): NormalizerModel
- Attributes
- protected
- Definition Classes
- AnnotatorApproach
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
beforeTraining(spark: SparkSession): Unit
- Definition Classes
- AnnotatorApproach
-
final
def
checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
val
cleanupPatterns: StringArrayParam
Normalization regex patterns which match will be removed from token (Default:
Array("[^\\pL+]")
)
-
final
def
clear(param: Param[_]): Normalizer.this.type
- Definition Classes
- Params
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
final
def
copy(extra: ParamMap): Estimator[NormalizerModel]
- Definition Classes
- AnnotatorApproach → Estimator → PipelineStage → Params
-
def
copyValues[T <: Params](to: T, extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
-
final
def
defaultCopy[T <: Params](extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
-
val
description: String
Cleans out tokens
Cleans out tokens
- Definition Classes
- Normalizer → AnnotatorApproach
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
explainParam(param: Param[_]): String
- Definition Classes
- Params
-
def
explainParams(): String
- Definition Classes
- Params
-
final
def
extractParamMap(): ParamMap
- Definition Classes
- Params
-
final
def
extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
fit(dataset: Dataset[_]): NormalizerModel
- Definition Classes
- AnnotatorApproach → Estimator
-
def
fit(dataset: Dataset[_], paramMaps: Seq[ParamMap]): Seq[NormalizerModel]
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" )
-
def
fit(dataset: Dataset[_], paramMap: ParamMap): NormalizerModel
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" )
-
def
fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): NormalizerModel
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" ) @varargs()
-
final
def
get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
getCleanupPatterns: Array[String]
Normalization regex patterns which match will be removed from token (Default:
Array("[^\\pL+]")
)
-
final
def
getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
def
getInputCols: Array[String]
- returns
input annotations columns currently used
- Definition Classes
- HasInputAnnotationCols
-
def
getLazyAnnotator: Boolean
- Definition Classes
- CanBeLazy
-
def
getLowercase: Boolean
Whether to convert strings to lowercase (Default:
false
) -
def
getMaxLength: Int
Set the maximum allowed length for each token
-
def
getMinLength: Int
Set the minimum allowed length for each token (Default:
0
) -
final
def
getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
-
final
def
getOutputCol: String
Gets annotation column name going to generate
Gets annotation column name going to generate
- Definition Classes
- HasOutputAnnotationCol
-
def
getParam(paramName: String): Param[Any]
- Definition Classes
- Params
-
def
getSlangMatchCase: Boolean
Whether or not to be case sensitive to match slangs (Default:
false
) -
final
def
hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
-
def
hasParam(paramName: String): Boolean
- Definition Classes
- Params
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
def
initializeLogIfNecessary(isInterpreter: Boolean): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
val
inputAnnotatorTypes: Array[String]
Input Annotator Type : TOKEN
Input Annotator Type : TOKEN
- Definition Classes
- Normalizer → HasInputAnnotationCols
-
final
val
inputCols: StringArrayParam
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
final
def
isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
isSet(param: Param[_]): Boolean
- Definition Classes
- Params
-
def
isTraceEnabled(): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
val
lazyAnnotator: BooleanParam
- Definition Classes
- CanBeLazy
-
def
log: Logger
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logName: String
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
val
lowercase: BooleanParam
Whether to convert strings to lowercase (Default:
false
) -
val
maxLength: IntParam
Set the maximum allowed length for each token
-
val
minLength: IntParam
Set the minimum allowed length for each token (Default:
0
) -
def
msgHelper(schema: StructType): String
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
onTrained(model: NormalizerModel, spark: SparkSession): Unit
- Definition Classes
- AnnotatorApproach
-
val
optionalInputAnnotatorTypes: Array[String]
- Definition Classes
- HasInputAnnotationCols
-
val
outputAnnotatorType: AnnotatorType
Output Annotator Type : TOKEN
Output Annotator Type : TOKEN
- Definition Classes
- Normalizer → HasOutputAnnotatorType
-
final
val
outputCol: Param[String]
- Attributes
- protected
- Definition Classes
- HasOutputAnnotationCol
-
lazy val
params: Array[Param[_]]
- Definition Classes
- Params
-
def
save(path: String): Unit
- Definition Classes
- MLWritable
- Annotations
- @Since( "1.6.0" ) @throws( ... )
-
final
def
set(paramPair: ParamPair[_]): Normalizer.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set(param: String, value: Any): Normalizer.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set[T](param: Param[T], value: T): Normalizer.this.type
- Definition Classes
- Params
-
def
setCleanupPatterns(value: Array[String]): Normalizer.this.type
Normalization regex patterns which match will be removed from token (Default:
Array("[^\\pL+]")
)
-
final
def
setDefault(paramPairs: ParamPair[_]*): Normalizer.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
setDefault[T](param: Param[T], value: T): Normalizer.this.type
- Attributes
- protected[org.apache.spark.ml]
- Definition Classes
- Params
-
final
def
setInputCols(value: String*): Normalizer.this.type
- Definition Classes
- HasInputAnnotationCols
-
def
setInputCols(value: Array[String]): Normalizer.this.type
Overrides required annotators column if different than default
Overrides required annotators column if different than default
- Definition Classes
- HasInputAnnotationCols
-
def
setLazyAnnotator(value: Boolean): Normalizer.this.type
- Definition Classes
- CanBeLazy
-
def
setLowercase(value: Boolean): Normalizer.this.type
Whether to convert strings to lowercase (Default:
false
) -
def
setMaxLength(value: Int): Normalizer.this.type
Set the maximum allowed length for each token
-
def
setMinLength(value: Int): Normalizer.this.type
Set the minimum allowed length for each token (Default:
0
) -
final
def
setOutputCol(value: String): Normalizer.this.type
Overrides annotation column name when transforming
Overrides annotation column name when transforming
- Definition Classes
- HasOutputAnnotationCol
-
def
setSlangDictionary(path: String, delimiter: String, readAs: Format = ReadAs.TEXT, options: Map[String, String] = Map("format" -> "text")): Normalizer.this.type
Delimited file with list of custom words to be manually corrected
-
def
setSlangDictionary(value: ExternalResource): Normalizer.this.type
Delimited file with list of custom words to be manually corrected
-
def
setSlangMatchCase(value: Boolean): Normalizer.this.type
Whether or not to be case sensitive to match slangs (Default:
false
) -
val
slangDictionary: ExternalResourceParam
Delimited file with list of custom words to be manually corrected
-
val
slangMatchCase: BooleanParam
Whether or not to be case sensitive to match slangs (Default:
false
) -
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
-
def
train(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): NormalizerModel
- Definition Classes
- Normalizer → AnnotatorApproach
-
final
def
transformSchema(schema: StructType): StructType
requirement for pipeline transformation validation.
requirement for pipeline transformation validation. It is called on fit()
- Definition Classes
- AnnotatorApproach → PipelineStage
-
def
transformSchema(schema: StructType, logging: Boolean): StructType
- Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
-
val
uid: String
- Definition Classes
- Normalizer → Identifiable
-
def
validate(schema: StructType): Boolean
takes a Dataset and checks to see if all the required annotation types are present.
takes a Dataset and checks to see if all the required annotation types are present.
- schema
to be validated
- returns
True if all the required types are present, else false
- Attributes
- protected
- Definition Classes
- AnnotatorApproach
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
def
write: MLWriter
- Definition Classes
- DefaultParamsWritable → MLWritable
Inherited from AnnotatorApproach[NormalizerModel]
Inherited from CanBeLazy
Inherited from DefaultParamsWritable
Inherited from MLWritable
Inherited from HasOutputAnnotatorType
Inherited from HasOutputAnnotationCol
Inherited from HasInputAnnotationCols
Inherited from Estimator[NormalizerModel]
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Parameters
A list of (hyper-)parameter keys this annotator can take. Users can set and get the parameter values through setters and getters, respectively.
Annotator types
Required input and expected output annotator types