class Doc2VecModel extends AnnotatorModel[Doc2VecModel] with HasSimpleAnnotate[Doc2VecModel] with HasStorageRef with HasEmbeddingsProperties with ParamsAndFeaturesWritable
Word2Vec model that creates vector representations of words in a text corpus.
The algorithm first constructs a vocabulary from the corpus and then learns vector representation of words in the vocabulary. The vector representation can be used as features in natural language processing and machine learning algorithms.
We use Word2Vec implemented in Spark ML. It uses skip-gram model in our implementation and a hierarchical softmax method to train the model. The variable names in the implementation match the original C implementation.
This is the instantiated model of the Doc2VecApproach. For training your own model, please see the documentation of that class.
Pretrained models can be loaded with pretrained of the companion object:
val embeddings = Doc2VecModel.pretrained() .setInputCols("token") .setOutputCol("embeddings")
The default model is "doc2vec_gigaword_300", if no name is provided.
For available pretrained models please see the Models Hub.
Sources :
For the original C implementation, see https://code.google.com/p/word2vec/
For the research paper, see Efficient Estimation of Word Representations in Vector Space and Distributed Representations of Words and Phrases and their Compositionality.
Example
import spark.implicits._ import com.johnsnowlabs.nlp.base.DocumentAssembler import com.johnsnowlabs.nlp.annotator.{Tokenizer, Doc2VecModel} import com.johnsnowlabs.nlp.EmbeddingsFinisher import org.apache.spark.ml.Pipeline val documentAssembler = new DocumentAssembler() .setInputCol("text") .setOutputCol("document") val tokenizer = new Tokenizer() .setInputCols(Array("document")) .setOutputCol("token") val embeddings = Doc2VecModel.pretrained() .setInputCols("token") .setOutputCol("embeddings") val embeddingsFinisher = new EmbeddingsFinisher() .setInputCols("embeddings") .setOutputCols("finished_embeddings") .setOutputAsVector(true) val pipeline = new Pipeline().setStages(Array( documentAssembler, tokenizer, embeddings, embeddingsFinisher )) val data = Seq("This is a sentence.").toDF("text") val result = pipeline.fit(data).transform(data) result.selectExpr("explode(finished_embeddings) as result").show(1, 80) +--------------------------------------------------------------------------------+ | result| +--------------------------------------------------------------------------------+ |[0.06222493574023247,0.011579325422644615,0.009919632226228714,0.109361454844...| +--------------------------------------------------------------------------------+
- Grouped
- Alphabetic
- By Inheritance
- Doc2VecModel
- HasEmbeddingsProperties
- HasProtectedParams
- HasStorageRef
- HasSimpleAnnotate
- AnnotatorModel
- CanBeLazy
- RawAnnotator
- HasOutputAnnotationCol
- HasInputAnnotationCols
- HasOutputAnnotatorType
- ParamsAndFeaturesWritable
- HasFeatures
- DefaultParamsWritable
- MLWritable
- Model
- Transformer
- PipelineStage
- Logging
- Params
- Serializable
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Type Members
- 
      
      
      
        
      
    
      
        implicit 
        class
      
      
        ProtectedParam[T] extends Param[T]
      
      
      - Definition Classes
- HasProtectedParams
 
- 
      
      
      
        
      
    
      
        
        type
      
      
        AnnotationContent = Seq[Row]
      
      
      internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI - Attributes
- protected
- Definition Classes
- AnnotatorModel
 
- 
      
      
      
        
      
    
      
        
        type
      
      
        AnnotatorType = String
      
      
      - Definition Classes
- HasOutputAnnotatorType
 
Value Members
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        !=(arg0: Any): Boolean
      
      
      - Definition Classes
- AnyRef → Any
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        ##(): Int
      
      
      - Definition Classes
- AnyRef → Any
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        $[T](param: Param[T]): T
      
      
      - Attributes
- protected
- Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        $$[T](feature: StructFeature[T]): T
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        $$[K, V](feature: MapFeature[K, V]): Map[K, V]
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        $$[T](feature: SetFeature[T]): Set[T]
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        $$[T](feature: ArrayFeature[T]): Array[T]
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        ==(arg0: Any): Boolean
      
      
      - Definition Classes
- AnyRef → Any
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        _transform(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): DataFrame
      
      
      - Attributes
- protected
- Definition Classes
- AnnotatorModel
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        afterAnnotate(dataset: DataFrame): DataFrame
      
      
      - Attributes
- protected
- Definition Classes
- Doc2VecModel → AnnotatorModel
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        annotate(annotations: Seq[Annotation]): Seq[Annotation]
      
      
      takes a document and annotations and produces new annotations of this annotator's annotation type takes a document and annotations and produces new annotations of this annotator's annotation type - annotations
- Annotations that correspond to inputAnnotationCols generated by previous annotators if any 
- returns
- any number of annotations processed for every input annotation. Not necessary one to one relationship 
 - Definition Classes
- Doc2VecModel → HasSimpleAnnotate
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        asInstanceOf[T0]: T0
      
      
      - Definition Classes
- Any
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        beforeAnnotate(dataset: Dataset[_]): Dataset[_]
      
      
      - Definition Classes
- Doc2VecModel → AnnotatorModel
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
      
      
      - Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        clear(param: Param[_]): Doc2VecModel.this.type
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        clone(): AnyRef
      
      
      - Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        copy(extra: ParamMap): Doc2VecModel
      
      
      requirement for annotators copies requirement for annotators copies - Definition Classes
- RawAnnotator → Model → Transformer → PipelineStage → Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        copyValues[T <: Params](to: T, extra: ParamMap): T
      
      
      - Attributes
- protected
- Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        createDatabaseConnection(database: Name): RocksDBConnection
      
      
      - Definition Classes
- HasStorageRef
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        defaultCopy[T <: Params](extra: ParamMap): T
      
      
      - Attributes
- protected
- Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        dfAnnotate: UserDefinedFunction
      
      
      Wraps annotate to happen inside SparkSQL user defined functions in order to act with org.apache.spark.sql.Column Wraps annotate to happen inside SparkSQL user defined functions in order to act with org.apache.spark.sql.Column - returns
- udf function to be applied to inputCols using this annotator's annotate function as part of ML transformation 
 - Definition Classes
- HasSimpleAnnotate
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        dimension: ProtectedParam[Int]
      
      
      Number of embedding dimensions (Default depends on model) Number of embedding dimensions (Default depends on model) - Definition Classes
- HasEmbeddingsProperties
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        eq(arg0: AnyRef): Boolean
      
      
      - Definition Classes
- AnyRef
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        equals(arg0: Any): Boolean
      
      
      - Definition Classes
- AnyRef → Any
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        explainParam(param: Param[_]): String
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        explainParams(): String
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        extraValidate(structType: StructType): Boolean
      
      
      - Attributes
- protected
- Definition Classes
- RawAnnotator
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        extraValidateMsg: String
      
      
      Override for additional custom schema checks Override for additional custom schema checks - Attributes
- protected
- Definition Classes
- RawAnnotator
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        extractParamMap(): ParamMap
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        extractParamMap(extra: ParamMap): ParamMap
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        features: ArrayBuffer[Feature[_, _, _]]
      
      
      - Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        finalize(): Unit
      
      
      - Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        get[T](feature: StructFeature[T]): Option[T]
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        get[K, V](feature: MapFeature[K, V]): Option[Map[K, V]]
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        get[T](feature: SetFeature[T]): Option[Set[T]]
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        get[T](feature: ArrayFeature[T]): Option[Array[T]]
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        get[T](param: Param[T]): Option[T]
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        getClass(): Class[_]
      
      
      - Definition Classes
- AnyRef → Any
- Annotations
- @native()
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        getDefault[T](param: Param[T]): Option[T]
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getDimension: Int
      
      
      - Definition Classes
- HasEmbeddingsProperties
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getInputCols: Array[String]
      
      
      - returns
- input annotations columns currently used 
 - Definition Classes
- HasInputAnnotationCols
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getLazyAnnotator: Boolean
      
      
      - Definition Classes
- CanBeLazy
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        getOrDefault[T](param: Param[T]): T
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        getOutputCol: String
      
      
      Gets annotation column name going to generate Gets annotation column name going to generate - Definition Classes
- HasOutputAnnotationCol
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getParam(paramName: String): Param[Any]
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getStorageRef: String
      
      
      - Definition Classes
- HasStorageRef
 
-  def getVectorSize: Int
-  def getVectors: DataFrame
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        hasDefault[T](param: Param[T]): Boolean
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        hasParam(paramName: String): Boolean
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        hasParent: Boolean
      
      
      - Definition Classes
- Model
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        hashCode(): Int
      
      
      - Definition Classes
- AnyRef → Any
- Annotations
- @native()
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        initializeLogIfNecessary(isInterpreter: Boolean): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        inputAnnotatorTypes: Array[AnnotatorType]
      
      
      Input annotator type : TOKEN Input annotator type : TOKEN - Definition Classes
- Doc2VecModel → HasInputAnnotationCols
 
- 
      
      
      
        
      
    
      
        final 
        val
      
      
        inputCols: StringArrayParam
      
      
      columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified - Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        isDefined(param: Param[_]): Boolean
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        isInstanceOf[T0]: Boolean
      
      
      - Definition Classes
- Any
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        isSet(param: Param[_]): Boolean
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        isTraceEnabled(): Boolean
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        lazyAnnotator: BooleanParam
      
      
      - Definition Classes
- CanBeLazy
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        log: Logger
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logDebug(msg: ⇒ String, throwable: Throwable): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logDebug(msg: ⇒ String): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logError(msg: ⇒ String, throwable: Throwable): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logError(msg: ⇒ String): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logInfo(msg: ⇒ String, throwable: Throwable): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logInfo(msg: ⇒ String): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logName: String
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logTrace(msg: ⇒ String, throwable: Throwable): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logTrace(msg: ⇒ String): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logWarning(msg: ⇒ String, throwable: Throwable): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logWarning(msg: ⇒ String): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        msgHelper(schema: StructType): String
      
      
      - Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        ne(arg0: AnyRef): Boolean
      
      
      - Definition Classes
- AnyRef
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        notify(): Unit
      
      
      - Definition Classes
- AnyRef
- Annotations
- @native()
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        notifyAll(): Unit
      
      
      - Definition Classes
- AnyRef
- Annotations
- @native()
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        onWrite(path: String, spark: SparkSession): Unit
      
      
      - Attributes
- protected
- Definition Classes
- ParamsAndFeaturesWritable
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        optionalInputAnnotatorTypes: Array[String]
      
      
      - Definition Classes
- HasInputAnnotationCols
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        outputAnnotatorType: String
      
      
      Output annotator type : SENTENCE_EMBEDDINGS Output annotator type : SENTENCE_EMBEDDINGS - Definition Classes
- Doc2VecModel → HasOutputAnnotatorType
 
- 
      
      
      
        
      
    
      
        final 
        val
      
      
        outputCol: Param[String]
      
      
      - Attributes
- protected
- Definition Classes
- HasOutputAnnotationCol
 
- 
      
      
      
        
      
    
      
        
        lazy val
      
      
        params: Array[Param[_]]
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        var
      
      
        parent: Estimator[Doc2VecModel]
      
      
      - Definition Classes
- Model
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        save(path: String): Unit
      
      
      - Definition Classes
- MLWritable
- Annotations
- @Since( "1.6.0" ) @throws( ... )
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        set[T](param: ProtectedParam[T], value: T): Doc2VecModel.this.type
      
      
      Sets the value for a protected Param. Sets the value for a protected Param. If the parameter was already set, it will not be set again. Default values do not count as a set value and can be overridden. - T
- Type of the parameter 
- param
- Protected parameter to set 
- value
- Value for the parameter 
- returns
- This object 
 - Definition Classes
- HasProtectedParams
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        set[T](feature: StructFeature[T], value: T): Doc2VecModel.this.type
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        set[K, V](feature: MapFeature[K, V], value: Map[K, V]): Doc2VecModel.this.type
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        set[T](feature: SetFeature[T], value: Set[T]): Doc2VecModel.this.type
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        set[T](feature: ArrayFeature[T], value: Array[T]): Doc2VecModel.this.type
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        set(paramPair: ParamPair[_]): Doc2VecModel.this.type
      
      
      - Attributes
- protected
- Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        set(param: String, value: Any): Doc2VecModel.this.type
      
      
      - Attributes
- protected
- Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        set[T](param: Param[T], value: T): Doc2VecModel.this.type
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setDefault[T](feature: StructFeature[T], value: () ⇒ T): Doc2VecModel.this.type
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setDefault[K, V](feature: MapFeature[K, V], value: () ⇒ Map[K, V]): Doc2VecModel.this.type
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setDefault[T](feature: SetFeature[T], value: () ⇒ Set[T]): Doc2VecModel.this.type
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setDefault[T](feature: ArrayFeature[T], value: () ⇒ Array[T]): Doc2VecModel.this.type
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        setDefault(paramPairs: ParamPair[_]*): Doc2VecModel.this.type
      
      
      - Attributes
- protected
- Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        setDefault[T](param: Param[T], value: T): Doc2VecModel.this.type
      
      
      - Attributes
- protected[org.apache.spark.ml]
- Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setDimension(value: Int): Doc2VecModel.this.type
      
      
      - Definition Classes
- HasEmbeddingsProperties
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        setInputCols(value: String*): Doc2VecModel.this.type
      
      
      - Definition Classes
- HasInputAnnotationCols
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setInputCols(value: Array[String]): Doc2VecModel.this.type
      
      
      Overrides required annotators column if different than default Overrides required annotators column if different than default - Definition Classes
- HasInputAnnotationCols
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setLazyAnnotator(value: Boolean): Doc2VecModel.this.type
      
      
      - Definition Classes
- CanBeLazy
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        setOutputCol(value: String): Doc2VecModel.this.type
      
      
      Overrides annotation column name when transforming Overrides annotation column name when transforming - Definition Classes
- HasOutputAnnotationCol
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setParent(parent: Estimator[Doc2VecModel]): Doc2VecModel
      
      
      - Definition Classes
- Model
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setStorageRef(value: String): Doc2VecModel.this.type
      
      
      - Definition Classes
- HasStorageRef
 
-  def setVectorSize(value: Int): Doc2VecModel.this.type
-  def setWordVectors(value: Map[String, Array[Float]]): Doc2VecModel.this.type
- 
      
      
      
        
      
    
      
        
        val
      
      
        storageRef: Param[String]
      
      
      Unique identifier for storage (Default: this.uid)Unique identifier for storage (Default: this.uid)- Definition Classes
- HasStorageRef
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        synchronized[T0](arg0: ⇒ T0): T0
      
      
      - Definition Classes
- AnyRef
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        toString(): String
      
      
      - Definition Classes
- Identifiable → AnyRef → Any
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        transform(dataset: Dataset[_]): DataFrame
      
      
      Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content - dataset
- Dataset[Row] 
 - Definition Classes
- AnnotatorModel → Transformer
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame
      
      
      - Definition Classes
- Transformer
- Annotations
- @Since( "2.0.0" )
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame
      
      
      - Definition Classes
- Transformer
- Annotations
- @Since( "2.0.0" ) @varargs()
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        transformSchema(schema: StructType): StructType
      
      
      requirement for pipeline transformation validation. requirement for pipeline transformation validation. It is called on fit() - Definition Classes
- RawAnnotator → PipelineStage
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        transformSchema(schema: StructType, logging: Boolean): StructType
      
      
      - Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        uid: String
      
      
      - Definition Classes
- Doc2VecModel → Identifiable
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        validate(schema: StructType): Boolean
      
      
      takes a Dataset and checks to see if all the required annotation types are present. takes a Dataset and checks to see if all the required annotation types are present. - schema
- to be validated 
- returns
- True if all the required types are present, else false 
 - Attributes
- protected
- Definition Classes
- RawAnnotator
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        validateStorageRef(dataset: Dataset[_], inputCols: Array[String], annotatorType: String): Unit
      
      
      - Definition Classes
- HasStorageRef
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        vectorSize: ProtectedParam[Int]
      
      
      The dimension of codes after transforming from words (> 0) (Default: 100)
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(): Unit
      
      
      - Definition Classes
- AnyRef
- Annotations
- @throws( ... )
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long, arg1: Int): Unit
      
      
      - Definition Classes
- AnyRef
- Annotations
- @throws( ... )
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long): Unit
      
      
      - Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        wordVectors: MapFeature[String, Array[Float]]
      
      
      Dictionary of words with their vectors 
- 
      
      
      
        
      
    
      
        
        def
      
      
        wrapColumnMetadata(col: Column): Column
      
      
      - Attributes
- protected
- Definition Classes
- RawAnnotator
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        wrapEmbeddingsMetadata(col: Column, embeddingsDim: Int, embeddingsRef: Option[String] = None): Column
      
      
      - Attributes
- protected
- Definition Classes
- HasEmbeddingsProperties
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        wrapSentenceEmbeddingsMetadata(col: Column, embeddingsDim: Int, embeddingsRef: Option[String] = None): Column
      
      
      - Attributes
- protected
- Definition Classes
- HasEmbeddingsProperties
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        write: MLWriter
      
      
      - Definition Classes
- ParamsAndFeaturesWritable → DefaultParamsWritable → MLWritable
 
Inherited from HasEmbeddingsProperties
Inherited from HasProtectedParams
Inherited from HasStorageRef
Inherited from HasSimpleAnnotate[Doc2VecModel]
Inherited from AnnotatorModel[Doc2VecModel]
Inherited from CanBeLazy
Inherited from RawAnnotator[Doc2VecModel]
Inherited from HasOutputAnnotationCol
Inherited from HasInputAnnotationCols
Inherited from HasOutputAnnotatorType
Inherited from ParamsAndFeaturesWritable
Inherited from HasFeatures
Inherited from DefaultParamsWritable
Inherited from MLWritable
Inherited from Model[Doc2VecModel]
Inherited from Transformer
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Parameters
A list of (hyper-)parameter keys this annotator can take. Users can set and get the parameter values through setters and getters, respectively.
Annotator types
Required input and expected output annotator types