class InstructorEmbeddings extends AnnotatorModel[InstructorEmbeddings] with HasBatchedAnnotate[InstructorEmbeddings] with WriteTensorflowModel with WriteOnnxModel with WriteOpenvinoModel with HasEmbeddingsProperties with HasStorageRef with WriteSentencePieceModel with HasCaseSensitiveProperties with HasEngine
Sentence embeddings using INSTRUCTOR.
Instructor👨🏫, an instruction-finetuned text embedding model that can generate text embeddings tailored to any task (e.g., classification, retrieval, clustering, text evaluation, etc.) and domains (e.g., science, finance, etc.) by simply providing the task instruction, without any finetuning. Instructor👨 achieves sota on 70 diverse embedding tasks!
Pretrained models can be loaded with pretrained of the companion object:
val embeddings = InstructorEmbeddings.pretrained() .setInputCols("document") .setOutputCol("instructor_embeddings")
The default model is "instructor_base", if no name is provided.
For available pretrained models please see the Models Hub.
For extended examples of usage, see InstructorEmbeddingsTestSpec.
Sources :
One Embedder, Any Task: Instruction-Finetuned Text Embeddings
Paper abstract
We introduce INSTRUCTOR, a new method for computing text embeddings given task instructions: every text input is embedded together with instructions explaining the use case (e.g., task and domain descriptions). Unlike encoders from prior work that are more specialized, INSTRUCTOR is a single embedder that can generate text embeddings tailored to different downstream tasks and domains, without any further training. We first annotate instructions for 330 diverse tasks and train INSTRUCTOR on this multitask mixture with a contrastive loss. We evaluate INSTRUCTOR on 70 embedding evaluation tasks (66 of which are unseen during training), ranging from classification and information retrieval to semantic textual similarity and text generation evaluation. INSTRUCTOR, while having an order of magnitude fewer parameters than the previous best model, achieves state-of-the-art performance, with an average improvement of 3.4% compared to the previous best results on the 70 diverse datasets. Our analysis suggests that INSTRUCTOR is robust to changes in instructions, and that instruction finetuning mitigates the challenge of training a single model on diverse datasets. Our model, code, and data are available at this https URL. https://instructor-embedding.github.io/
Example
import spark.implicits._ import com.johnsnowlabs.nlp.base.DocumentAssembler import com.johnsnowlabs.nlp.annotators.Tokenizer import com.johnsnowlabs.nlp.embeddings.InstructorEmbeddings import com.johnsnowlabs.nlp.EmbeddingsFinisher import org.apache.spark.ml.Pipeline val documentAssembler = new DocumentAssembler() .setInputCol("text") .setOutputCol("document") val embeddings = InstructorEmbeddings.pretrained("instructor_base", "en") .setInputCols("document") .setInstruction("Represent the Medicine sentence for clustering: ") .setOutputCol("instructor_embeddings") val embeddingsFinisher = new EmbeddingsFinisher() .setInputCols("instructor_embeddings") .setOutputCols("finished_embeddings") .setOutputAsVector(true) val pipeline = new Pipeline().setStages(Array( documentAssembler, embeddings, embeddingsFinisher )) val data = Seq("Dynamical Scalar Degree of Freedom in Horava-Lifshitz Gravity").toDF("text") val result = pipeline.fit(data).transform(data) result.selectExpr("explode(finished_embeddings) as result").show(1, 80) +--------------------------------------------------------------------------------+ | result| +--------------------------------------------------------------------------------+ |[-2.3497989177703857,0.480538547039032,-0.3238905668258667,-1.612930893898010...| +--------------------------------------------------------------------------------+
- See also
- Annotators Main Page for a list of transformer based embeddings 
- Grouped
- Alphabetic
- By Inheritance
- InstructorEmbeddings
- HasEngine
- HasCaseSensitiveProperties
- WriteSentencePieceModel
- HasStorageRef
- HasEmbeddingsProperties
- HasProtectedParams
- WriteOpenvinoModel
- WriteOnnxModel
- WriteTensorflowModel
- HasBatchedAnnotate
- AnnotatorModel
- CanBeLazy
- RawAnnotator
- HasOutputAnnotationCol
- HasInputAnnotationCols
- HasOutputAnnotatorType
- ParamsAndFeaturesWritable
- HasFeatures
- DefaultParamsWritable
- MLWritable
- Model
- Transformer
- PipelineStage
- Logging
- Params
- Serializable
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
Type Members
- 
      
      
      
        
      
    
      
        implicit 
        class
      
      
        ProtectedParam[T] extends Param[T]
      
      
      - Definition Classes
- HasProtectedParams
 
- 
      
      
      
        
      
    
      
        
        type
      
      
        AnnotationContent = Seq[Row]
      
      
      internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI - Attributes
- protected
- Definition Classes
- AnnotatorModel
 
- 
      
      
      
        
      
    
      
        
        type
      
      
        AnnotatorType = String
      
      
      - Definition Classes
- HasOutputAnnotatorType
 
Value Members
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        !=(arg0: Any): Boolean
      
      
      - Definition Classes
- AnyRef → Any
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        ##(): Int
      
      
      - Definition Classes
- AnyRef → Any
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        $[T](param: Param[T]): T
      
      
      - Attributes
- protected
- Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        $$[T](feature: StructFeature[T]): T
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        $$[K, V](feature: MapFeature[K, V]): Map[K, V]
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        $$[T](feature: SetFeature[T]): Set[T]
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        $$[T](feature: ArrayFeature[T]): Array[T]
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        ==(arg0: Any): Boolean
      
      
      - Definition Classes
- AnyRef → Any
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        _transform(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): DataFrame
      
      
      - Attributes
- protected
- Definition Classes
- AnnotatorModel
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        afterAnnotate(dataset: DataFrame): DataFrame
      
      
      - Attributes
- protected
- Definition Classes
- InstructorEmbeddings → AnnotatorModel
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        asInstanceOf[T0]: T0
      
      
      - Definition Classes
- Any
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        batchAnnotate(batchedAnnotations: Seq[Array[Annotation]]): Seq[Seq[Annotation]]
      
      
      takes a document and annotations and produces new annotations of this annotator's annotation type takes a document and annotations and produces new annotations of this annotator's annotation type - batchedAnnotations
- Annotations that correspond to inputAnnotationCols generated by previous annotators if any 
- returns
- any number of annotations processed for every input annotation. Not necessary one to one relationship 
 - Definition Classes
- InstructorEmbeddings → HasBatchedAnnotate
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        batchProcess(rows: Iterator[_]): Iterator[Row]
      
      
      - Definition Classes
- HasBatchedAnnotate
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        batchSize: IntParam
      
      
      Size of every batch (Default depends on model). Size of every batch (Default depends on model). - Definition Classes
- HasBatchedAnnotate
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        beforeAnnotate(dataset: Dataset[_]): Dataset[_]
      
      
      - Attributes
- protected
- Definition Classes
- AnnotatorModel
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        caseSensitive: BooleanParam
      
      
      Whether to ignore case in index lookups (Default depends on model) Whether to ignore case in index lookups (Default depends on model) - Definition Classes
- HasCaseSensitiveProperties
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
      
      
      - Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        clear(param: Param[_]): InstructorEmbeddings.this.type
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        clone(): AnyRef
      
      
      - Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        configProtoBytes: IntArrayParam
      
      
      ConfigProto from tensorflow, serialized into byte array. ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()
- 
      
      
      
        
      
    
      
        
        def
      
      
        copy(extra: ParamMap): InstructorEmbeddings
      
      
      requirement for annotators copies requirement for annotators copies - Definition Classes
- RawAnnotator → Model → Transformer → PipelineStage → Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        copyValues[T <: Params](to: T, extra: ParamMap): T
      
      
      - Attributes
- protected
- Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        createDatabaseConnection(database: Name): RocksDBConnection
      
      
      - Definition Classes
- HasStorageRef
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        defaultCopy[T <: Params](extra: ParamMap): T
      
      
      - Attributes
- protected
- Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        dimension: ProtectedParam[Int]
      
      
      Number of embedding dimensions (Default depends on model) Number of embedding dimensions (Default depends on model) - Definition Classes
- HasEmbeddingsProperties
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        engine: Param[String]
      
      
      This param is set internally once via loadSavedModel. This param is set internally once via loadSavedModel. That's why there is no setter - Definition Classes
- HasEngine
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        eq(arg0: AnyRef): Boolean
      
      
      - Definition Classes
- AnyRef
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        equals(arg0: Any): Boolean
      
      
      - Definition Classes
- AnyRef → Any
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        explainParam(param: Param[_]): String
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        explainParams(): String
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        extraValidate(structType: StructType): Boolean
      
      
      - Attributes
- protected
- Definition Classes
- RawAnnotator
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        extraValidateMsg: String
      
      
      Override for additional custom schema checks Override for additional custom schema checks - Attributes
- protected
- Definition Classes
- RawAnnotator
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        extractParamMap(): ParamMap
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        extractParamMap(extra: ParamMap): ParamMap
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        features: ArrayBuffer[Feature[_, _, _]]
      
      
      - Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        finalize(): Unit
      
      
      - Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        get[T](feature: StructFeature[T]): Option[T]
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        get[K, V](feature: MapFeature[K, V]): Option[Map[K, V]]
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        get[T](feature: SetFeature[T]): Option[Set[T]]
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        get[T](feature: ArrayFeature[T]): Option[Array[T]]
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        get[T](param: Param[T]): Option[T]
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getBatchSize: Int
      
      
      Size of every batch. Size of every batch. - Definition Classes
- HasBatchedAnnotate
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getCaseSensitive: Boolean
      
      
      - Definition Classes
- HasCaseSensitiveProperties
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        getClass(): Class[_]
      
      
      - Definition Classes
- AnyRef → Any
- Annotations
- @native()
 
-  def getConfigProtoBytes: Option[Array[Byte]]
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        getDefault[T](param: Param[T]): Option[T]
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getDimension: Int
      
      
      - Definition Classes
- HasEmbeddingsProperties
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getEngine: String
      
      
      - Definition Classes
- HasEngine
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getInputCols: Array[String]
      
      
      - returns
- input annotations columns currently used 
 - Definition Classes
- HasInputAnnotationCols
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getLazyAnnotator: Boolean
      
      
      - Definition Classes
- CanBeLazy
 
-  def getMaxSentenceLength: Int
-  def getModelIfNotSet: Instructor
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        getOrDefault[T](param: Param[T]): T
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        getOutputCol: String
      
      
      Gets annotation column name going to generate Gets annotation column name going to generate - Definition Classes
- HasOutputAnnotationCol
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getParam(paramName: String): Param[Any]
      
      
      - Definition Classes
- Params
 
-  def getSignatures: Option[Map[String, String]]
- 
      
      
      
        
      
    
      
        
        def
      
      
        getStorageRef: String
      
      
      - Definition Classes
- HasStorageRef
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        hasDefault[T](param: Param[T]): Boolean
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        hasParam(paramName: String): Boolean
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        hasParent: Boolean
      
      
      - Definition Classes
- Model
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        hashCode(): Int
      
      
      - Definition Classes
- AnyRef → Any
- Annotations
- @native()
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        initializeLogIfNecessary(isInterpreter: Boolean): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        inputAnnotatorTypes: Array[String]
      
      
      Annotator reference id. Annotator reference id. Used to identify elements in metadata or to refer to this annotator type - Definition Classes
- InstructorEmbeddings → HasInputAnnotationCols
 
- 
      
      
      
        
      
    
      
        final 
        val
      
      
        inputCols: StringArrayParam
      
      
      columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified - Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        instruction: Param[String]
      
      
      Set transformer instruction, e.g. Set transformer instruction, e.g. 'summarize' format: "instruction:".
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        isDefined(param: Param[_]): Boolean
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        isInstanceOf[T0]: Boolean
      
      
      - Definition Classes
- Any
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        isSet(param: Param[_]): Boolean
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        isTraceEnabled(): Boolean
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        lazyAnnotator: BooleanParam
      
      
      - Definition Classes
- CanBeLazy
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        log: Logger
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logDebug(msg: ⇒ String, throwable: Throwable): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logDebug(msg: ⇒ String): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logError(msg: ⇒ String, throwable: Throwable): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logError(msg: ⇒ String): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logInfo(msg: ⇒ String, throwable: Throwable): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logInfo(msg: ⇒ String): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logName: String
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logTrace(msg: ⇒ String, throwable: Throwable): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logTrace(msg: ⇒ String): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logWarning(msg: ⇒ String, throwable: Throwable): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logWarning(msg: ⇒ String): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        maxSentenceLength: IntParam
      
      
      Max sentence length to process (Default: 128)
- 
      
      
      
        
      
    
      
        
        def
      
      
        msgHelper(schema: StructType): String
      
      
      - Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        ne(arg0: AnyRef): Boolean
      
      
      - Definition Classes
- AnyRef
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        notify(): Unit
      
      
      - Definition Classes
- AnyRef
- Annotations
- @native()
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        notifyAll(): Unit
      
      
      - Definition Classes
- AnyRef
- Annotations
- @native()
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        onWrite(path: String, spark: SparkSession): Unit
      
      
      - Definition Classes
- InstructorEmbeddings → ParamsAndFeaturesWritable
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        optionalInputAnnotatorTypes: Array[String]
      
      
      - Definition Classes
- HasInputAnnotationCols
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        outputAnnotatorType: AnnotatorType
      
      
      - Definition Classes
- InstructorEmbeddings → HasOutputAnnotatorType
 
- 
      
      
      
        
      
    
      
        final 
        val
      
      
        outputCol: Param[String]
      
      
      - Attributes
- protected
- Definition Classes
- HasOutputAnnotationCol
 
- 
      
      
      
        
      
    
      
        
        lazy val
      
      
        params: Array[Param[_]]
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        var
      
      
        parent: Estimator[InstructorEmbeddings]
      
      
      - Definition Classes
- Model
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        save(path: String): Unit
      
      
      - Definition Classes
- MLWritable
- Annotations
- @Since( "1.6.0" ) @throws( ... )
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        set[T](param: ProtectedParam[T], value: T): InstructorEmbeddings.this.type
      
      
      Sets the value for a protected Param. Sets the value for a protected Param. If the parameter was already set, it will not be set again. Default values do not count as a set value and can be overridden. - T
- Type of the parameter 
- param
- Protected parameter to set 
- value
- Value for the parameter 
- returns
- This object 
 - Definition Classes
- HasProtectedParams
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        set[T](feature: StructFeature[T], value: T): InstructorEmbeddings.this.type
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        set[K, V](feature: MapFeature[K, V], value: Map[K, V]): InstructorEmbeddings.this.type
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        set[T](feature: SetFeature[T], value: Set[T]): InstructorEmbeddings.this.type
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        set[T](feature: ArrayFeature[T], value: Array[T]): InstructorEmbeddings.this.type
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        set(paramPair: ParamPair[_]): InstructorEmbeddings.this.type
      
      
      - Attributes
- protected
- Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        set(param: String, value: Any): InstructorEmbeddings.this.type
      
      
      - Attributes
- protected
- Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        set[T](param: Param[T], value: T): InstructorEmbeddings.this.type
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setBatchSize(size: Int): InstructorEmbeddings.this.type
      
      
      Size of every batch. Size of every batch. - Definition Classes
- HasBatchedAnnotate
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setCaseSensitive(value: Boolean): InstructorEmbeddings.this.type
      
      
      Whether to lowercase tokens or not Whether to lowercase tokens or not - Definition Classes
- InstructorEmbeddings → HasCaseSensitiveProperties
 
-  def setConfigProtoBytes(bytes: Array[Int]): InstructorEmbeddings.this.type
- 
      
      
      
        
      
    
      
        
        def
      
      
        setDefault[T](feature: StructFeature[T], value: () ⇒ T): InstructorEmbeddings.this.type
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setDefault[K, V](feature: MapFeature[K, V], value: () ⇒ Map[K, V]): InstructorEmbeddings.this.type
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setDefault[T](feature: SetFeature[T], value: () ⇒ Set[T]): InstructorEmbeddings.this.type
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setDefault[T](feature: ArrayFeature[T], value: () ⇒ Array[T]): InstructorEmbeddings.this.type
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        setDefault(paramPairs: ParamPair[_]*): InstructorEmbeddings.this.type
      
      
      - Attributes
- protected
- Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        setDefault[T](param: Param[T], value: T): InstructorEmbeddings.this.type
      
      
      - Attributes
- protected[org.apache.spark.ml]
- Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setDimension(value: Int): InstructorEmbeddings.this.type
      
      
      Set Embeddings dimensions for the BERT model Only possible to set this when the first time is saved dimension is not changeable, it comes from BERT config file Set Embeddings dimensions for the BERT model Only possible to set this when the first time is saved dimension is not changeable, it comes from BERT config file - Definition Classes
- InstructorEmbeddings → HasEmbeddingsProperties
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        setInputCols(value: String*): InstructorEmbeddings.this.type
      
      
      - Definition Classes
- HasInputAnnotationCols
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setInputCols(value: Array[String]): InstructorEmbeddings.this.type
      
      
      Overrides required annotators column if different than default Overrides required annotators column if different than default - Definition Classes
- HasInputAnnotationCols
 
-  def setInstruction(value: String): InstructorEmbeddings.this.type
- 
      
      
      
        
      
    
      
        
        def
      
      
        setLazyAnnotator(value: Boolean): InstructorEmbeddings.this.type
      
      
      - Definition Classes
- CanBeLazy
 
-  def setMaxSentenceLength(value: Int): InstructorEmbeddings.this.type
-  def setModelIfNotSet(spark: SparkSession, tensorflowWrapper: Option[TensorflowWrapper], onnxWrapper: Option[OnnxWrapper], openvinoWrapper: Option[OpenvinoWrapper], spp: SentencePieceWrapper): InstructorEmbeddings
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        setOutputCol(value: String): InstructorEmbeddings.this.type
      
      
      Overrides annotation column name when transforming Overrides annotation column name when transforming - Definition Classes
- HasOutputAnnotationCol
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setParent(parent: Estimator[InstructorEmbeddings]): InstructorEmbeddings
      
      
      - Definition Classes
- Model
 
-  def setSignatures(value: Map[String, String]): InstructorEmbeddings.this.type
- 
      
      
      
        
      
    
      
        
        def
      
      
        setStorageRef(value: String): InstructorEmbeddings.this.type
      
      
      - Definition Classes
- HasStorageRef
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        signatures: MapFeature[String, String]
      
      
      It contains TF model signatures for the laded saved model 
- 
      
      
      
        
      
    
      
        
        val
      
      
        storageRef: Param[String]
      
      
      Unique identifier for storage (Default: this.uid)Unique identifier for storage (Default: this.uid)- Definition Classes
- HasStorageRef
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        synchronized[T0](arg0: ⇒ T0): T0
      
      
      - Definition Classes
- AnyRef
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        toString(): String
      
      
      - Definition Classes
- Identifiable → AnyRef → Any
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        transform(dataset: Dataset[_]): DataFrame
      
      
      Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content - dataset
- Dataset[Row] 
 - Definition Classes
- AnnotatorModel → Transformer
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame
      
      
      - Definition Classes
- Transformer
- Annotations
- @Since( "2.0.0" )
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame
      
      
      - Definition Classes
- Transformer
- Annotations
- @Since( "2.0.0" ) @varargs()
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        transformSchema(schema: StructType): StructType
      
      
      requirement for pipeline transformation validation. requirement for pipeline transformation validation. It is called on fit() - Definition Classes
- RawAnnotator → PipelineStage
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        transformSchema(schema: StructType, logging: Boolean): StructType
      
      
      - Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        uid: String
      
      
      - Definition Classes
- InstructorEmbeddings → Identifiable
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        validate(schema: StructType): Boolean
      
      
      takes a Dataset and checks to see if all the required annotation types are present. takes a Dataset and checks to see if all the required annotation types are present. - schema
- to be validated 
- returns
- True if all the required types are present, else false 
 - Attributes
- protected
- Definition Classes
- RawAnnotator
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        validateStorageRef(dataset: Dataset[_], inputCols: Array[String], annotatorType: String): Unit
      
      
      - Definition Classes
- HasStorageRef
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(): Unit
      
      
      - Definition Classes
- AnyRef
- Annotations
- @throws( ... )
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long, arg1: Int): Unit
      
      
      - Definition Classes
- AnyRef
- Annotations
- @throws( ... )
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long): Unit
      
      
      - Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        wrapColumnMetadata(col: Column): Column
      
      
      - Attributes
- protected
- Definition Classes
- RawAnnotator
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        wrapEmbeddingsMetadata(col: Column, embeddingsDim: Int, embeddingsRef: Option[String] = None): Column
      
      
      - Attributes
- protected
- Definition Classes
- HasEmbeddingsProperties
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        wrapSentenceEmbeddingsMetadata(col: Column, embeddingsDim: Int, embeddingsRef: Option[String] = None): Column
      
      
      - Attributes
- protected
- Definition Classes
- HasEmbeddingsProperties
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        write: MLWriter
      
      
      - Definition Classes
- ParamsAndFeaturesWritable → DefaultParamsWritable → MLWritable
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        writeOnnxModel(path: String, spark: SparkSession, onnxWrapper: OnnxWrapper, suffix: String, fileName: String): Unit
      
      
      - Definition Classes
- WriteOnnxModel
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        writeOnnxModels(path: String, spark: SparkSession, onnxWrappersWithNames: Seq[(OnnxWrapper, String)], suffix: String): Unit
      
      
      - Definition Classes
- WriteOnnxModel
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        writeOpenvinoModel(path: String, spark: SparkSession, openvinoWrapper: OpenvinoWrapper, suffix: String, fileName: String): Unit
      
      
      - Definition Classes
- WriteOpenvinoModel
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        writeOpenvinoModels(path: String, spark: SparkSession, ovWrappersWithNames: Seq[(OpenvinoWrapper, String)], suffix: String): Unit
      
      
      - Definition Classes
- WriteOpenvinoModel
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        writeSentencePieceModel(path: String, spark: SparkSession, spp: SentencePieceWrapper, suffix: String, filename: String): Unit
      
      
      - Definition Classes
- WriteSentencePieceModel
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        writeTensorflowHub(path: String, tfPath: String, spark: SparkSession, suffix: String = "_use"): Unit
      
      
      - Definition Classes
- WriteTensorflowModel
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        writeTensorflowModel(path: String, spark: SparkSession, tensorflow: TensorflowWrapper, suffix: String, filename: String, configProtoBytes: Option[Array[Byte]] = None): Unit
      
      
      - Definition Classes
- WriteTensorflowModel
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        writeTensorflowModelV2(path: String, spark: SparkSession, tensorflow: TensorflowWrapper, suffix: String, filename: String, configProtoBytes: Option[Array[Byte]] = None, savedSignatures: Option[Map[String, String]] = None): Unit
      
      
      - Definition Classes
- WriteTensorflowModel
 
Inherited from HasEngine
Inherited from HasCaseSensitiveProperties
Inherited from WriteSentencePieceModel
Inherited from HasStorageRef
Inherited from HasEmbeddingsProperties
Inherited from HasProtectedParams
Inherited from WriteOpenvinoModel
Inherited from WriteOnnxModel
Inherited from WriteTensorflowModel
Inherited from HasBatchedAnnotate[InstructorEmbeddings]
Inherited from AnnotatorModel[InstructorEmbeddings]
Inherited from CanBeLazy
Inherited from RawAnnotator[InstructorEmbeddings]
Inherited from HasOutputAnnotationCol
Inherited from HasInputAnnotationCols
Inherited from HasOutputAnnotatorType
Inherited from ParamsAndFeaturesWritable
Inherited from HasFeatures
Inherited from DefaultParamsWritable
Inherited from MLWritable
Inherited from Model[InstructorEmbeddings]
Inherited from Transformer
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Parameters
A list of (hyper-)parameter keys this annotator can take. Users can set and get the parameter values through setters and getters, respectively.