Packages

class ElmoEmbeddings extends AnnotatorModel[ElmoEmbeddings] with HasSimpleAnnotate[ElmoEmbeddings] with WriteTensorflowModel with HasEmbeddingsProperties with HasStorageRef with HasCaseSensitiveProperties with HasEngine

Word embeddings from ELMo (Embeddings from Language Models), a language model trained on the 1 Billion Word Benchmark.

Note that this is a very computationally expensive module compared to word embedding modules that only perform embedding lookups. The use of an accelerator is recommended.

Pretrained models can be loaded with pretrained of the companion object:

val embeddings = ElmoEmbeddings.pretrained()
  .setInputCols("sentence", "token")
  .setOutputCol("elmo_embeddings")

The default model is "elmo", if no name is provided.

For available pretrained models please see the Models Hub.

The pooling layer can be set with setPoolingLayer to the following values:

  • "word_emb": the character-based word representations with shape [batch_size, max_length, 512].
  • "lstm_outputs1": the first LSTM hidden state with shape [batch_size, max_length, 1024].
  • "lstm_outputs2": the second LSTM hidden state with shape [batch_size, max_length, 1024].
  • "elmo": the weighted sum of the 3 layers, where the weights are trainable. This tensor has shape [batch_size, max_length, 1024].

For extended examples of usage, see the Examples and the ElmoEmbeddingsTestSpec.

References:

https://tfhub.dev/google/elmo/3

Deep contextualized word representations

Paper abstract:

We introduce a new type of deep contextualized word representation that models both (1) complex characteristics of word use (e.g., syntax and semantics), and (2) how these uses vary across linguistic contexts (i.e., to model polysemy). Our word vectors are learned functions of the internal states of a deep bidirectional language model (biLM), which is pre-trained on a large text corpus. We show that these representations can be easily added to existing models and significantly improve the state of the art across six challenging NLP problems, including question answering, textual entailment and sentiment analysis. We also present an analysis showing that exposing the deep internals of the pre-trained network is crucial, allowing downstream models to mix different types of semi-supervision signals.

Example

import spark.implicits._
import com.johnsnowlabs.nlp.base.DocumentAssembler
import com.johnsnowlabs.nlp.annotators.Tokenizer
import com.johnsnowlabs.nlp.embeddings.ElmoEmbeddings
import com.johnsnowlabs.nlp.EmbeddingsFinisher
import org.apache.spark.ml.Pipeline

val documentAssembler = new DocumentAssembler()
  .setInputCol("text")
  .setOutputCol("document")

val tokenizer = new Tokenizer()
  .setInputCols("document")
  .setOutputCol("token")

val embeddings = ElmoEmbeddings.pretrained()
  .setPoolingLayer("word_emb")
  .setInputCols("token", "document")
  .setOutputCol("embeddings")

val embeddingsFinisher = new EmbeddingsFinisher()
  .setInputCols("embeddings")
  .setOutputCols("finished_embeddings")
  .setOutputAsVector(true)
  .setCleanAnnotations(false)

val pipeline = new Pipeline().setStages(Array(
  documentAssembler,
  tokenizer,
  embeddings,
  embeddingsFinisher
))

val data = Seq("This is a sentence.").toDF("text")
val result = pipeline.fit(data).transform(data)

result.selectExpr("explode(finished_embeddings) as result").show(5, 80)
+--------------------------------------------------------------------------------+
|                                                                          result|
+--------------------------------------------------------------------------------+
|[6.662458181381226E-4,-0.2541114091873169,-0.6275503039360046,0.5787073969841...|
|[0.19154725968837738,0.22998669743537903,-0.2894386649131775,0.21524395048618...|
|[0.10400570929050446,0.12288510054349899,-0.07056470215320587,-0.246389418840...|
|[0.49932169914245605,-0.12706467509269714,0.30969417095184326,0.2643227577209...|
|[-0.8871506452560425,-0.20039963722229004,-1.0601330995559692,0.0348707810044...|
+--------------------------------------------------------------------------------+
See also

Annotators Main Page for a list of other transformer based embeddings

Ordering
  1. Grouped
  2. Alphabetic
  3. By Inheritance
Inherited
  1. ElmoEmbeddings
  2. HasEngine
  3. HasCaseSensitiveProperties
  4. HasStorageRef
  5. HasEmbeddingsProperties
  6. HasProtectedParams
  7. WriteTensorflowModel
  8. HasSimpleAnnotate
  9. AnnotatorModel
  10. CanBeLazy
  11. RawAnnotator
  12. HasOutputAnnotationCol
  13. HasInputAnnotationCols
  14. HasOutputAnnotatorType
  15. ParamsAndFeaturesWritable
  16. HasFeatures
  17. DefaultParamsWritable
  18. MLWritable
  19. Model
  20. Transformer
  21. PipelineStage
  22. Logging
  23. Params
  24. Serializable
  25. Serializable
  26. Identifiable
  27. AnyRef
  28. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new ElmoEmbeddings()

    Annotator reference id.

    Annotator reference id. Used to identify elements in metadata or to refer to this annotator type

  2. new ElmoEmbeddings(uid: String)

    uid

    required uid for storing annotator to disk

Type Members

  1. implicit class ProtectedParam[T] extends Param[T]
    Definition Classes
    HasProtectedParams
  2. type AnnotationContent = Seq[Row]

    internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI

    internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI

    Attributes
    protected
    Definition Classes
    AnnotatorModel
  3. type AnnotatorType = String
    Definition Classes
    HasOutputAnnotatorType

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def $[T](param: Param[T]): T
    Attributes
    protected
    Definition Classes
    Params
  4. def $$[T](feature: StructFeature[T]): T
    Attributes
    protected
    Definition Classes
    HasFeatures
  5. def $$[K, V](feature: MapFeature[K, V]): Map[K, V]
    Attributes
    protected
    Definition Classes
    HasFeatures
  6. def $$[T](feature: SetFeature[T]): Set[T]
    Attributes
    protected
    Definition Classes
    HasFeatures
  7. def $$[T](feature: ArrayFeature[T]): Array[T]
    Attributes
    protected
    Definition Classes
    HasFeatures
  8. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  9. def _transform(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): DataFrame
    Attributes
    protected
    Definition Classes
    AnnotatorModel
  10. def afterAnnotate(dataset: DataFrame): DataFrame
    Attributes
    protected
    Definition Classes
    ElmoEmbeddingsAnnotatorModel
  11. def annotate(annotations: Seq[Annotation]): Seq[Annotation]

    takes a document and annotations and produces new annotations of this annotator's annotation type

    takes a document and annotations and produces new annotations of this annotator's annotation type

    annotations

    Annotations that correspond to inputAnnotationCols generated by previous annotators if any

    returns

    any number of annotations processed for every input annotation. Not necessary one to one relationship

    Definition Classes
    ElmoEmbeddingsHasSimpleAnnotate
  12. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  13. val batchSize: IntParam

    Batch size (Default: 32).

    Batch size (Default: 32). Large values allows faster processing but requires more memory.

  14. def beforeAnnotate(dataset: Dataset[_]): Dataset[_]
    Attributes
    protected
    Definition Classes
    AnnotatorModel
  15. val caseSensitive: BooleanParam

    Whether to ignore case in index lookups (Default depends on model)

    Whether to ignore case in index lookups (Default depends on model)

    Definition Classes
    HasCaseSensitiveProperties
  16. final def checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
    Attributes
    protected
    Definition Classes
    HasInputAnnotationCols
  17. final def clear(param: Param[_]): ElmoEmbeddings.this.type
    Definition Classes
    Params
  18. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  19. val configProtoBytes: IntArrayParam

    ConfigProto from tensorflow, serialized into byte array.

    ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()

  20. def copy(extra: ParamMap): ElmoEmbeddings

    requirement for annotators copies

    requirement for annotators copies

    Definition Classes
    RawAnnotator → Model → Transformer → PipelineStage → Params
  21. def copyValues[T <: Params](to: T, extra: ParamMap): T
    Attributes
    protected
    Definition Classes
    Params
  22. def createDatabaseConnection(database: Name): RocksDBConnection
    Definition Classes
    HasStorageRef
  23. final def defaultCopy[T <: Params](extra: ParamMap): T
    Attributes
    protected
    Definition Classes
    Params
  24. def dfAnnotate: UserDefinedFunction

    Wraps annotate to happen inside SparkSQL user defined functions in order to act with org.apache.spark.sql.Column

    Wraps annotate to happen inside SparkSQL user defined functions in order to act with org.apache.spark.sql.Column

    returns

    udf function to be applied to inputCols using this annotator's annotate function as part of ML transformation

    Definition Classes
    HasSimpleAnnotate
  25. val dimension: ProtectedParam[Int]

    Number of embedding dimensions (Default depends on model)

    Number of embedding dimensions (Default depends on model)

    Definition Classes
    HasEmbeddingsProperties
  26. val engine: Param[String]

    This param is set internally once via loadSavedModel.

    This param is set internally once via loadSavedModel. That's why there is no setter

    Definition Classes
    HasEngine
  27. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  28. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  29. def explainParam(param: Param[_]): String
    Definition Classes
    Params
  30. def explainParams(): String
    Definition Classes
    Params
  31. def extraValidate(structType: StructType): Boolean
    Attributes
    protected
    Definition Classes
    RawAnnotator
  32. def extraValidateMsg: String

    Override for additional custom schema checks

    Override for additional custom schema checks

    Attributes
    protected
    Definition Classes
    RawAnnotator
  33. final def extractParamMap(): ParamMap
    Definition Classes
    Params
  34. final def extractParamMap(extra: ParamMap): ParamMap
    Definition Classes
    Params
  35. val features: ArrayBuffer[Feature[_, _, _]]
    Definition Classes
    HasFeatures
  36. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  37. def get[T](feature: StructFeature[T]): Option[T]
    Attributes
    protected
    Definition Classes
    HasFeatures
  38. def get[K, V](feature: MapFeature[K, V]): Option[Map[K, V]]
    Attributes
    protected
    Definition Classes
    HasFeatures
  39. def get[T](feature: SetFeature[T]): Option[Set[T]]
    Attributes
    protected
    Definition Classes
    HasFeatures
  40. def get[T](feature: ArrayFeature[T]): Option[Array[T]]
    Attributes
    protected
    Definition Classes
    HasFeatures
  41. final def get[T](param: Param[T]): Option[T]
    Definition Classes
    Params
  42. def getCaseSensitive: Boolean

    Definition Classes
    HasCaseSensitiveProperties
  43. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  44. def getConfigProtoBytes: Option[Array[Byte]]
  45. final def getDefault[T](param: Param[T]): Option[T]
    Definition Classes
    Params
  46. def getDimension: Int

    Definition Classes
    HasEmbeddingsProperties
  47. def getEngine: String

    Definition Classes
    HasEngine
  48. def getInputCols: Array[String]

    returns

    input annotations columns currently used

    Definition Classes
    HasInputAnnotationCols
  49. def getLazyAnnotator: Boolean
    Definition Classes
    CanBeLazy
  50. def getModelIfNotSet: Elmo
  51. final def getOrDefault[T](param: Param[T]): T
    Definition Classes
    Params
  52. final def getOutputCol: String

    Gets annotation column name going to generate

    Gets annotation column name going to generate

    Definition Classes
    HasOutputAnnotationCol
  53. def getParam(paramName: String): Param[Any]
    Definition Classes
    Params
  54. def getPoolingLayer: String

    Function used to set the embedding output layer of the ELMO model

  55. def getStorageRef: String
    Definition Classes
    HasStorageRef
  56. final def hasDefault[T](param: Param[T]): Boolean
    Definition Classes
    Params
  57. def hasParam(paramName: String): Boolean
    Definition Classes
    Params
  58. def hasParent: Boolean
    Definition Classes
    Model
  59. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  60. def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
    Attributes
    protected
    Definition Classes
    Logging
  61. def initializeLogIfNecessary(isInterpreter: Boolean): Unit
    Attributes
    protected
    Definition Classes
    Logging
  62. val inputAnnotatorTypes: Array[String]

    Input annotator types : DOCUMENT, TOKEN

    Input annotator types : DOCUMENT, TOKEN

    Definition Classes
    ElmoEmbeddingsHasInputAnnotationCols
  63. final val inputCols: StringArrayParam

    columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified

    columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified

    Attributes
    protected
    Definition Classes
    HasInputAnnotationCols
  64. final def isDefined(param: Param[_]): Boolean
    Definition Classes
    Params
  65. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  66. final def isSet(param: Param[_]): Boolean
    Definition Classes
    Params
  67. def isTraceEnabled(): Boolean
    Attributes
    protected
    Definition Classes
    Logging
  68. val lazyAnnotator: BooleanParam
    Definition Classes
    CanBeLazy
  69. def log: Logger
    Attributes
    protected
    Definition Classes
    Logging
  70. def logDebug(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  71. def logDebug(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  72. def logError(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  73. def logError(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  74. def logInfo(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  75. def logInfo(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  76. def logName: String
    Attributes
    protected
    Definition Classes
    Logging
  77. def logTrace(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  78. def logTrace(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  79. def logWarning(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  80. def logWarning(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  81. def msgHelper(schema: StructType): String
    Attributes
    protected
    Definition Classes
    HasInputAnnotationCols
  82. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  83. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  84. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  85. def onWrite(path: String, spark: SparkSession): Unit
  86. val optionalInputAnnotatorTypes: Array[String]
    Definition Classes
    HasInputAnnotationCols
  87. val outputAnnotatorType: AnnotatorType

    Output annotator type : WORD_EMBEDDINGS

    Output annotator type : WORD_EMBEDDINGS

    Definition Classes
    ElmoEmbeddingsHasOutputAnnotatorType
  88. final val outputCol: Param[String]
    Attributes
    protected
    Definition Classes
    HasOutputAnnotationCol
  89. lazy val params: Array[Param[_]]
    Definition Classes
    Params
  90. var parent: Estimator[ElmoEmbeddings]
    Definition Classes
    Model
  91. val poolingLayer: Param[String]

    Set ELMo pooling layer to: "word_emb", "lstm_outputs1", "lstm_outputs2", or "elmo" (Default: "word_emb").

    Set ELMo pooling layer to: "word_emb", "lstm_outputs1", "lstm_outputs2", or "elmo" (Default: "word_emb").

    Possible values are:

    • "word_emb": the character-based word representations with shape [batch_size, max_length, 512].
    • "lstm_outputs1": the first LSTM hidden state with shape [batch_size, max_length, 1024].
    • "lstm_outputs2": the second LSTM hidden state with shape [batch_size, max_length, 1024].
    • "elmo": the weighted sum of the 3 layers, where the weights are trainable. This tensor has shape [batch_size, max_length, 1024]
  92. def save(path: String): Unit
    Definition Classes
    MLWritable
    Annotations
    @Since( "1.6.0" ) @throws( ... )
  93. def set[T](param: ProtectedParam[T], value: T): ElmoEmbeddings.this.type

    Sets the value for a protected Param.

    Sets the value for a protected Param.

    If the parameter was already set, it will not be set again. Default values do not count as a set value and can be overridden.

    T

    Type of the parameter

    param

    Protected parameter to set

    value

    Value for the parameter

    returns

    This object

    Definition Classes
    HasProtectedParams
  94. def set[T](feature: StructFeature[T], value: T): ElmoEmbeddings.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  95. def set[K, V](feature: MapFeature[K, V], value: Map[K, V]): ElmoEmbeddings.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  96. def set[T](feature: SetFeature[T], value: Set[T]): ElmoEmbeddings.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  97. def set[T](feature: ArrayFeature[T], value: Array[T]): ElmoEmbeddings.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  98. final def set(paramPair: ParamPair[_]): ElmoEmbeddings.this.type
    Attributes
    protected
    Definition Classes
    Params
  99. final def set(param: String, value: Any): ElmoEmbeddings.this.type
    Attributes
    protected
    Definition Classes
    Params
  100. final def set[T](param: Param[T], value: T): ElmoEmbeddings.this.type
    Definition Classes
    Params
  101. def setBatchSize(size: Int): ElmoEmbeddings.this.type

    Large values allows faster processing but requires more memory.

  102. def setCaseSensitive(value: Boolean): ElmoEmbeddings.this.type

    Definition Classes
    HasCaseSensitiveProperties
  103. def setConfigProtoBytes(bytes: Array[Int]): ElmoEmbeddings.this.type

    ConfigProto from tensorflow, serialized into byte array.

    ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()

  104. def setDefault[T](feature: StructFeature[T], value: () ⇒ T): ElmoEmbeddings.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  105. def setDefault[K, V](feature: MapFeature[K, V], value: () ⇒ Map[K, V]): ElmoEmbeddings.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  106. def setDefault[T](feature: SetFeature[T], value: () ⇒ Set[T]): ElmoEmbeddings.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  107. def setDefault[T](feature: ArrayFeature[T], value: () ⇒ Array[T]): ElmoEmbeddings.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  108. final def setDefault(paramPairs: ParamPair[_]*): ElmoEmbeddings.this.type
    Attributes
    protected
    Definition Classes
    Params
  109. final def setDefault[T](param: Param[T], value: T): ElmoEmbeddings.this.type
    Attributes
    protected[org.apache.spark.ml]
    Definition Classes
    Params
  110. def setDimension(value: Int): ElmoEmbeddings.this.type

    Set Dimension of pooling layer.

    Set Dimension of pooling layer. This is meta for the annotation and will not affect the actual embedding calculation.

    Definition Classes
    ElmoEmbeddingsHasEmbeddingsProperties
  111. final def setInputCols(value: String*): ElmoEmbeddings.this.type
    Definition Classes
    HasInputAnnotationCols
  112. def setInputCols(value: Array[String]): ElmoEmbeddings.this.type

    Overrides required annotators column if different than default

    Overrides required annotators column if different than default

    Definition Classes
    HasInputAnnotationCols
  113. def setLazyAnnotator(value: Boolean): ElmoEmbeddings.this.type
    Definition Classes
    CanBeLazy
  114. def setModelIfNotSet(spark: SparkSession, tensorflow: TensorflowWrapper): ElmoEmbeddings.this.type
  115. final def setOutputCol(value: String): ElmoEmbeddings.this.type

    Overrides annotation column name when transforming

    Overrides annotation column name when transforming

    Definition Classes
    HasOutputAnnotationCol
  116. def setParent(parent: Estimator[ElmoEmbeddings]): ElmoEmbeddings
    Definition Classes
    Model
  117. def setPoolingLayer(layer: String): ElmoEmbeddings.this.type

    Function used to set the embedding output layer of the ELMO model

    Function used to set the embedding output layer of the ELMO model

    layer

    Layer specification

  118. def setStorageRef(value: String): ElmoEmbeddings.this.type
    Definition Classes
    HasStorageRef
  119. val storageRef: Param[String]

    Unique identifier for storage (Default: this.uid)

    Unique identifier for storage (Default: this.uid)

    Definition Classes
    HasStorageRef
  120. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  121. def toString(): String
    Definition Classes
    Identifiable → AnyRef → Any
  122. final def transform(dataset: Dataset[_]): DataFrame

    Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content

    Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content

    dataset

    Dataset[Row]

    Definition Classes
    AnnotatorModel → Transformer
  123. def transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame
    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" )
  124. def transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame
    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" ) @varargs()
  125. final def transformSchema(schema: StructType): StructType

    requirement for pipeline transformation validation.

    requirement for pipeline transformation validation. It is called on fit()

    Definition Classes
    RawAnnotator → PipelineStage
  126. def transformSchema(schema: StructType, logging: Boolean): StructType
    Attributes
    protected
    Definition Classes
    PipelineStage
    Annotations
    @DeveloperApi()
  127. val uid: String
    Definition Classes
    ElmoEmbeddings → Identifiable
  128. def validate(schema: StructType): Boolean

    takes a Dataset and checks to see if all the required annotation types are present.

    takes a Dataset and checks to see if all the required annotation types are present.

    schema

    to be validated

    returns

    True if all the required types are present, else false

    Attributes
    protected
    Definition Classes
    RawAnnotator
  129. def validateStorageRef(dataset: Dataset[_], inputCols: Array[String], annotatorType: String): Unit
    Definition Classes
    HasStorageRef
  130. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  131. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  132. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  133. def wrapColumnMetadata(col: Column): Column
    Attributes
    protected
    Definition Classes
    RawAnnotator
  134. def wrapEmbeddingsMetadata(col: Column, embeddingsDim: Int, embeddingsRef: Option[String] = None): Column
    Attributes
    protected
    Definition Classes
    HasEmbeddingsProperties
  135. def wrapSentenceEmbeddingsMetadata(col: Column, embeddingsDim: Int, embeddingsRef: Option[String] = None): Column
    Attributes
    protected
    Definition Classes
    HasEmbeddingsProperties
  136. def write: MLWriter
    Definition Classes
    ParamsAndFeaturesWritable → DefaultParamsWritable → MLWritable
  137. def writeTensorflowHub(path: String, tfPath: String, spark: SparkSession, suffix: String = "_use"): Unit
    Definition Classes
    WriteTensorflowModel
  138. def writeTensorflowModel(path: String, spark: SparkSession, tensorflow: TensorflowWrapper, suffix: String, filename: String, configProtoBytes: Option[Array[Byte]] = None): Unit
    Definition Classes
    WriteTensorflowModel
  139. def writeTensorflowModelV2(path: String, spark: SparkSession, tensorflow: TensorflowWrapper, suffix: String, filename: String, configProtoBytes: Option[Array[Byte]] = None, savedSignatures: Option[Map[String, String]] = None): Unit
    Definition Classes
    WriteTensorflowModel

Inherited from HasEngine

Inherited from HasStorageRef

Inherited from HasEmbeddingsProperties

Inherited from HasProtectedParams

Inherited from WriteTensorflowModel

Inherited from AnnotatorModel[ElmoEmbeddings]

Inherited from CanBeLazy

Inherited from RawAnnotator[ElmoEmbeddings]

Inherited from HasOutputAnnotationCol

Inherited from HasInputAnnotationCols

Inherited from HasOutputAnnotatorType

Inherited from ParamsAndFeaturesWritable

Inherited from HasFeatures

Inherited from DefaultParamsWritable

Inherited from MLWritable

Inherited from Model[ElmoEmbeddings]

Inherited from Transformer

Inherited from PipelineStage

Inherited from Logging

Inherited from Params

Inherited from Serializable

Inherited from Serializable

Inherited from Identifiable

Inherited from AnyRef

Inherited from Any

Parameters

A list of (hyper-)parameter keys this annotator can take. Users can set and get the parameter values through setters and getters, respectively.

Annotator types

Required input and expected output annotator types

Members

Parameter setters

Parameter getters