Packages

class RoBertaSentenceEmbeddings extends AnnotatorModel[RoBertaSentenceEmbeddings] with HasBatchedAnnotate[RoBertaSentenceEmbeddings] with WriteTensorflowModel with WriteOnnxModel with HasEmbeddingsProperties with HasStorageRef with HasCaseSensitiveProperties with HasEngine

Sentence-level embeddings using RoBERTa. The RoBERTa model was proposed in RoBERTa: A Robustly Optimized BERT Pretraining Approach by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov. It is based on Google's BERT model released in 2018.

It builds on BERT and modifies key hyperparameters, removing the next-sentence pretraining objective and training with much larger mini-batches and learning rates.

Pretrained models can be loaded with pretrained of the companion object:

val embeddings = RoBertaSentenceEmbeddings.pretrained()
  .setInputCols("sentence")
  .setOutputCol("sentence_embeddings")

The default model is "sent_roberta_base", if no name is provided. For available pretrained models please see the Models Hub.

To see which models are compatible and how to import them see https://github.com/JohnSnowLabs/spark-nlp/discussions/5669 and to see more extended examples, see RoBertaEmbeddingsTestSpec.

Paper Abstract:

Language model pretraining has led to significant performance gains but careful comparison between different approaches is challenging. Training is computationally expensive, often done on private datasets of different sizes, and, as we will show, hyperparameter choices have significant impact on the final results. We present a replication study of BERT pretraining (Devlin et al., 2019) that carefully measures the impact of many key hyperparameters and training data size. We find that BERT was significantly undertrained, and can match or exceed the performance of every model published after it. Our best model achieves state-of-the-art results on GLUE, RACE and SQuAD. These results highlight the importance of previously overlooked design choices, and raise questions about the source of recently reported improvements. We release our models and code.

Tips:

  • RoBERTa has the same architecture as BERT, but uses a byte-level BPE as a tokenizer (same as GPT-2) and uses a different pretraining scheme.
  • RoBERTa doesn't have :obj:token_type_ids, you don't need to indicate which token belongs to which segment. Just separate your segments with the separation token :obj:tokenizer.sep_token (or :obj:</s>)

The original code can be found here https://github.com/pytorch/fairseq/tree/master/examples/roberta.

Example

import spark.implicits._
import com.johnsnowlabs.nlp.base._
import com.johnsnowlabs.nlp.annotator._
import com.johnsnowlabs.nlp.EmbeddingsFinisher
import org.apache.spark.ml.Pipeline

val documentAssembler = new DocumentAssembler()
  .setInputCol("text")
  .setOutputCol("document")

val tokenizer = new Tokenizer()
  .setInputCols(Array("document"))
  .setOutputCol("token")

val sentenceEmbeddings = RoBertaSentenceEmbeddings.pretrained()
  .setInputCols("document")
  .setOutputCol("sentence_embeddings")
  .setCaseSensitive(true)

// you can either use the output to train ClassifierDL, SentimentDL, or MultiClassifierDL
// or you can use EmbeddingsFinisher to prepare the results for Spark ML functions

val embeddingsFinisher = new EmbeddingsFinisher()
  .setInputCols("sentence_embeddings")
  .setOutputCols("finished_embeddings")
  .setOutputAsVector(true)
  .setCleanAnnotations(false)

val pipeline = new Pipeline()
  .setStages(Array(
    documentAssembler,
    tokenizer,
    sentenceEmbeddings,
    embeddingsFinisher
  ))

val data = Seq("This is a sentence.").toDF("text")
val result = pipeline.fit(data).transform(data)

result.selectExpr("explode(finished_embeddings) as result").show(5, 80)
+--------------------------------------------------------------------------------+
|                                                                          result|
+--------------------------------------------------------------------------------+
|[0.18792399764060974,-0.14591649174690247,0.20547787845134735,0.1468472778797...|
|[0.22845706343650818,0.18073144555091858,0.09725798666477203,-0.0417917296290...|
|[0.07037967443466187,-0.14801117777824402,-0.03603338822722435,-0.17893412709...|
|[-0.08734266459941864,0.2486150562763214,-0.009067727252840996,-0.24408400058...|
|[0.22409197688102722,-0.4312366545200348,0.1401449590921402,0.356410235166549...|
+--------------------------------------------------------------------------------+
See also

RoBertaEmbeddings for token-level embeddings

Annotators Main Page for a list of transformer based embeddings

Ordering
  1. Grouped
  2. Alphabetic
  3. By Inheritance
Inherited
  1. RoBertaSentenceEmbeddings
  2. HasEngine
  3. HasCaseSensitiveProperties
  4. HasStorageRef
  5. HasEmbeddingsProperties
  6. HasProtectedParams
  7. WriteOnnxModel
  8. WriteTensorflowModel
  9. HasBatchedAnnotate
  10. AnnotatorModel
  11. CanBeLazy
  12. RawAnnotator
  13. HasOutputAnnotationCol
  14. HasInputAnnotationCols
  15. HasOutputAnnotatorType
  16. ParamsAndFeaturesWritable
  17. HasFeatures
  18. DefaultParamsWritable
  19. MLWritable
  20. Model
  21. Transformer
  22. PipelineStage
  23. Logging
  24. Params
  25. Serializable
  26. Serializable
  27. Identifiable
  28. AnyRef
  29. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new RoBertaSentenceEmbeddings()

    Annotator reference id.

    Annotator reference id. Used to identify elements in metadata or to refer to this annotator type

  2. new RoBertaSentenceEmbeddings(uid: String)

Type Members

  1. implicit class ProtectedParam[T] extends Param[T]
    Definition Classes
    HasProtectedParams
  2. type AnnotationContent = Seq[Row]

    internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI

    internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI

    Attributes
    protected
    Definition Classes
    AnnotatorModel
  3. type AnnotatorType = String
    Definition Classes
    HasOutputAnnotatorType

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def $[T](param: Param[T]): T
    Attributes
    protected
    Definition Classes
    Params
  4. def $$[T](feature: StructFeature[T]): T
    Attributes
    protected
    Definition Classes
    HasFeatures
  5. def $$[K, V](feature: MapFeature[K, V]): Map[K, V]
    Attributes
    protected
    Definition Classes
    HasFeatures
  6. def $$[T](feature: SetFeature[T]): Set[T]
    Attributes
    protected
    Definition Classes
    HasFeatures
  7. def $$[T](feature: ArrayFeature[T]): Array[T]
    Attributes
    protected
    Definition Classes
    HasFeatures
  8. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  9. def _transform(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): DataFrame
    Attributes
    protected
    Definition Classes
    AnnotatorModel
  10. def afterAnnotate(dataset: DataFrame): DataFrame
    Attributes
    protected
    Definition Classes
    RoBertaSentenceEmbeddingsAnnotatorModel
  11. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  12. def batchAnnotate(batchedAnnotations: Seq[Array[Annotation]]): Seq[Seq[Annotation]]

    takes a document and annotations and produces new annotations of this annotator's annotation type

    takes a document and annotations and produces new annotations of this annotator's annotation type

    batchedAnnotations

    Annotations that correspond to inputAnnotationCols generated by previous annotators if any

    returns

    any number of annotations processed for every input annotation. Not necessary one to one relationship

    Definition Classes
    RoBertaSentenceEmbeddingsHasBatchedAnnotate
  13. def batchProcess(rows: Iterator[_]): Iterator[Row]
    Definition Classes
    HasBatchedAnnotate
  14. val batchSize: IntParam

    Size of every batch (Default depends on model).

    Size of every batch (Default depends on model).

    Definition Classes
    HasBatchedAnnotate
  15. def beforeAnnotate(dataset: Dataset[_]): Dataset[_]
    Attributes
    protected
    Definition Classes
    AnnotatorModel
  16. val caseSensitive: BooleanParam

    Whether to ignore case in index lookups (Default depends on model)

    Whether to ignore case in index lookups (Default depends on model)

    Definition Classes
    HasCaseSensitiveProperties
  17. final def checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
    Attributes
    protected
    Definition Classes
    HasInputAnnotationCols
  18. final def clear(param: Param[_]): RoBertaSentenceEmbeddings.this.type
    Definition Classes
    Params
  19. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  20. val configProtoBytes: IntArrayParam

    ConfigProto from tensorflow, serialized into byte array.

    ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()

  21. def copy(extra: ParamMap): RoBertaSentenceEmbeddings

    requirement for annotators copies

    requirement for annotators copies

    Definition Classes
    RawAnnotator → Model → Transformer → PipelineStage → Params
  22. def copyValues[T <: Params](to: T, extra: ParamMap): T
    Attributes
    protected
    Definition Classes
    Params
  23. def createDatabaseConnection(database: Name): RocksDBConnection
    Definition Classes
    HasStorageRef
  24. final def defaultCopy[T <: Params](extra: ParamMap): T
    Attributes
    protected
    Definition Classes
    Params
  25. val dimension: ProtectedParam[Int]

    Number of embedding dimensions (Default depends on model)

    Number of embedding dimensions (Default depends on model)

    Definition Classes
    HasEmbeddingsProperties
  26. val engine: Param[String]

    This param is set internally once via loadSavedModel.

    This param is set internally once via loadSavedModel. That's why there is no setter

    Definition Classes
    HasEngine
  27. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  28. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  29. def explainParam(param: Param[_]): String
    Definition Classes
    Params
  30. def explainParams(): String
    Definition Classes
    Params
  31. def extraValidate(structType: StructType): Boolean
    Attributes
    protected
    Definition Classes
    RawAnnotator
  32. def extraValidateMsg: String

    Override for additional custom schema checks

    Override for additional custom schema checks

    Attributes
    protected
    Definition Classes
    RawAnnotator
  33. final def extractParamMap(): ParamMap
    Definition Classes
    Params
  34. final def extractParamMap(extra: ParamMap): ParamMap
    Definition Classes
    Params
  35. val features: ArrayBuffer[Feature[_, _, _]]
    Definition Classes
    HasFeatures
  36. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  37. def get[T](feature: StructFeature[T]): Option[T]
    Attributes
    protected
    Definition Classes
    HasFeatures
  38. def get[K, V](feature: MapFeature[K, V]): Option[Map[K, V]]
    Attributes
    protected
    Definition Classes
    HasFeatures
  39. def get[T](feature: SetFeature[T]): Option[Set[T]]
    Attributes
    protected
    Definition Classes
    HasFeatures
  40. def get[T](feature: ArrayFeature[T]): Option[Array[T]]
    Attributes
    protected
    Definition Classes
    HasFeatures
  41. final def get[T](param: Param[T]): Option[T]
    Definition Classes
    Params
  42. def getBatchSize: Int

    Size of every batch.

    Size of every batch.

    Definition Classes
    HasBatchedAnnotate
  43. def getCaseSensitive: Boolean

    Definition Classes
    HasCaseSensitiveProperties
  44. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  45. def getConfigProtoBytes: Option[Array[Byte]]

  46. final def getDefault[T](param: Param[T]): Option[T]
    Definition Classes
    Params
  47. def getDimension: Int

    Definition Classes
    HasEmbeddingsProperties
  48. def getEngine: String

    Definition Classes
    HasEngine
  49. def getInputCols: Array[String]

    returns

    input annotations columns currently used

    Definition Classes
    HasInputAnnotationCols
  50. def getLazyAnnotator: Boolean
    Definition Classes
    CanBeLazy
  51. def getMaxSentenceLength: Int

  52. def getModelIfNotSet: RoBerta

  53. final def getOrDefault[T](param: Param[T]): T
    Definition Classes
    Params
  54. final def getOutputCol: String

    Gets annotation column name going to generate

    Gets annotation column name going to generate

    Definition Classes
    HasOutputAnnotationCol
  55. def getParam(paramName: String): Param[Any]
    Definition Classes
    Params
  56. def getSignatures: Option[Map[String, String]]

  57. def getStorageRef: String
    Definition Classes
    HasStorageRef
  58. final def hasDefault[T](param: Param[T]): Boolean
    Definition Classes
    Params
  59. def hasParam(paramName: String): Boolean
    Definition Classes
    Params
  60. def hasParent: Boolean
    Definition Classes
    Model
  61. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  62. def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
    Attributes
    protected
    Definition Classes
    Logging
  63. def initializeLogIfNecessary(isInterpreter: Boolean): Unit
    Attributes
    protected
    Definition Classes
    Logging
  64. val inputAnnotatorTypes: Array[String]

    Input Annotator Types: DOCUMENT, TOKEN

    Input Annotator Types: DOCUMENT, TOKEN

    Definition Classes
    RoBertaSentenceEmbeddingsHasInputAnnotationCols
  65. final val inputCols: StringArrayParam

    columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified

    columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified

    Attributes
    protected
    Definition Classes
    HasInputAnnotationCols
  66. final def isDefined(param: Param[_]): Boolean
    Definition Classes
    Params
  67. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  68. final def isSet(param: Param[_]): Boolean
    Definition Classes
    Params
  69. def isTraceEnabled(): Boolean
    Attributes
    protected
    Definition Classes
    Logging
  70. val lazyAnnotator: BooleanParam
    Definition Classes
    CanBeLazy
  71. def log: Logger
    Attributes
    protected
    Definition Classes
    Logging
  72. def logDebug(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  73. def logDebug(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  74. def logError(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  75. def logError(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  76. def logInfo(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  77. def logInfo(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  78. def logName: String
    Attributes
    protected
    Definition Classes
    Logging
  79. def logTrace(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  80. def logTrace(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  81. def logWarning(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  82. def logWarning(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  83. val maxSentenceLength: IntParam

    Max sentence length to process (Default: 128)

  84. val merges: MapFeature[(String, String), Int]

    Holding merges.txt coming from RoBERTa model

  85. def msgHelper(schema: StructType): String
    Attributes
    protected
    Definition Classes
    HasInputAnnotationCols
  86. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  87. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  88. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  89. def onWrite(path: String, spark: SparkSession): Unit
  90. val optionalInputAnnotatorTypes: Array[String]
    Definition Classes
    HasInputAnnotationCols
  91. val outputAnnotatorType: AnnotatorType

    Output Annotator Types: WORD_EMBEDDINGS

    Output Annotator Types: WORD_EMBEDDINGS

    Definition Classes
    RoBertaSentenceEmbeddingsHasOutputAnnotatorType
  92. final val outputCol: Param[String]
    Attributes
    protected
    Definition Classes
    HasOutputAnnotationCol
  93. def padTokenId: Int
  94. lazy val params: Array[Param[_]]
    Definition Classes
    Params
  95. var parent: Estimator[RoBertaSentenceEmbeddings]
    Definition Classes
    Model
  96. def save(path: String): Unit
    Definition Classes
    MLWritable
    Annotations
    @Since( "1.6.0" ) @throws( ... )
  97. def sentenceEndTokenId: Int
  98. def sentenceStartTokenId: Int
  99. def set[T](param: ProtectedParam[T], value: T): RoBertaSentenceEmbeddings.this.type

    Sets the value for a protected Param.

    Sets the value for a protected Param.

    If the parameter was already set, it will not be set again. Default values do not count as a set value and can be overridden.

    T

    Type of the parameter

    param

    Protected parameter to set

    value

    Value for the parameter

    returns

    This object

    Definition Classes
    HasProtectedParams
  100. def set[T](feature: StructFeature[T], value: T): RoBertaSentenceEmbeddings.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  101. def set[K, V](feature: MapFeature[K, V], value: Map[K, V]): RoBertaSentenceEmbeddings.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  102. def set[T](feature: SetFeature[T], value: Set[T]): RoBertaSentenceEmbeddings.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  103. def set[T](feature: ArrayFeature[T], value: Array[T]): RoBertaSentenceEmbeddings.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  104. final def set(paramPair: ParamPair[_]): RoBertaSentenceEmbeddings.this.type
    Attributes
    protected
    Definition Classes
    Params
  105. final def set(param: String, value: Any): RoBertaSentenceEmbeddings.this.type
    Attributes
    protected
    Definition Classes
    Params
  106. final def set[T](param: Param[T], value: T): RoBertaSentenceEmbeddings.this.type
    Definition Classes
    Params
  107. def setBatchSize(size: Int): RoBertaSentenceEmbeddings.this.type

    Size of every batch.

    Size of every batch.

    Definition Classes
    HasBatchedAnnotate
  108. def setCaseSensitive(value: Boolean): RoBertaSentenceEmbeddings.this.type

    Whether to lowercase tokens or not

    Whether to lowercase tokens or not

    Definition Classes
    RoBertaSentenceEmbeddingsHasCaseSensitiveProperties
  109. def setConfigProtoBytes(bytes: Array[Int]): RoBertaSentenceEmbeddings.this.type

  110. def setDefault[T](feature: StructFeature[T], value: () ⇒ T): RoBertaSentenceEmbeddings.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  111. def setDefault[K, V](feature: MapFeature[K, V], value: () ⇒ Map[K, V]): RoBertaSentenceEmbeddings.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  112. def setDefault[T](feature: SetFeature[T], value: () ⇒ Set[T]): RoBertaSentenceEmbeddings.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  113. def setDefault[T](feature: ArrayFeature[T], value: () ⇒ Array[T]): RoBertaSentenceEmbeddings.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  114. final def setDefault(paramPairs: ParamPair[_]*): RoBertaSentenceEmbeddings.this.type
    Attributes
    protected
    Definition Classes
    Params
  115. final def setDefault[T](param: Param[T], value: T): RoBertaSentenceEmbeddings.this.type
    Attributes
    protected[org.apache.spark.ml]
    Definition Classes
    Params
  116. def setDimension(value: Int): RoBertaSentenceEmbeddings.this.type

    Set Embeddings dimensions for the RoBERTa model.

    Set Embeddings dimensions for the RoBERTa model. Only possible to set this when the first time is saved dimension is not changeable, it comes from RoBERTa config file.

    Definition Classes
    RoBertaSentenceEmbeddingsHasEmbeddingsProperties
  117. final def setInputCols(value: String*): RoBertaSentenceEmbeddings.this.type
    Definition Classes
    HasInputAnnotationCols
  118. def setInputCols(value: Array[String]): RoBertaSentenceEmbeddings.this.type

    Overrides required annotators column if different than default

    Overrides required annotators column if different than default

    Definition Classes
    HasInputAnnotationCols
  119. def setLazyAnnotator(value: Boolean): RoBertaSentenceEmbeddings.this.type
    Definition Classes
    CanBeLazy
  120. def setMaxSentenceLength(value: Int): RoBertaSentenceEmbeddings.this.type

  121. def setMerges(value: Map[(String, String), Int]): RoBertaSentenceEmbeddings.this.type

  122. def setModelIfNotSet(spark: SparkSession, tensorflowWrapper: Option[TensorflowWrapper], onnxWrapper: Option[OnnxWrapper]): RoBertaSentenceEmbeddings

  123. final def setOutputCol(value: String): RoBertaSentenceEmbeddings.this.type

    Overrides annotation column name when transforming

    Overrides annotation column name when transforming

    Definition Classes
    HasOutputAnnotationCol
  124. def setParent(parent: Estimator[RoBertaSentenceEmbeddings]): RoBertaSentenceEmbeddings
    Definition Classes
    Model
  125. def setSignatures(value: Map[String, String]): RoBertaSentenceEmbeddings.this.type

  126. def setStorageRef(value: String): RoBertaSentenceEmbeddings.this.type
    Definition Classes
    HasStorageRef
  127. def setVocabulary(value: Map[String, Int]): RoBertaSentenceEmbeddings.this.type

  128. val signatures: MapFeature[String, String]

    It contains TF model signatures for the laded saved model

  129. val storageRef: Param[String]

    Unique identifier for storage (Default: this.uid)

    Unique identifier for storage (Default: this.uid)

    Definition Classes
    HasStorageRef
  130. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  131. def toString(): String
    Definition Classes
    Identifiable → AnyRef → Any
  132. def tokenize(sentences: Seq[Sentence]): Seq[WordpieceTokenizedSentence]
  133. final def transform(dataset: Dataset[_]): DataFrame

    Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content

    Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content

    dataset

    Dataset[Row]

    Definition Classes
    AnnotatorModel → Transformer
  134. def transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame
    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" )
  135. def transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame
    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" ) @varargs()
  136. final def transformSchema(schema: StructType): StructType

    requirement for pipeline transformation validation.

    requirement for pipeline transformation validation. It is called on fit()

    Definition Classes
    RawAnnotator → PipelineStage
  137. def transformSchema(schema: StructType, logging: Boolean): StructType
    Attributes
    protected
    Definition Classes
    PipelineStage
    Annotations
    @DeveloperApi()
  138. val uid: String
    Definition Classes
    RoBertaSentenceEmbeddings → Identifiable
  139. def validate(schema: StructType): Boolean

    takes a Dataset and checks to see if all the required annotation types are present.

    takes a Dataset and checks to see if all the required annotation types are present.

    schema

    to be validated

    returns

    True if all the required types are present, else false

    Attributes
    protected
    Definition Classes
    RawAnnotator
  140. def validateStorageRef(dataset: Dataset[_], inputCols: Array[String], annotatorType: String): Unit
    Definition Classes
    HasStorageRef
  141. val vocabulary: MapFeature[String, Int]

    Vocabulary used to encode the words to ids with bpeTokenizer.encode

  142. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  143. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  144. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  145. def wrapColumnMetadata(col: Column): Column
    Attributes
    protected
    Definition Classes
    RawAnnotator
  146. def wrapEmbeddingsMetadata(col: Column, embeddingsDim: Int, embeddingsRef: Option[String] = None): Column
    Attributes
    protected
    Definition Classes
    HasEmbeddingsProperties
  147. def wrapSentenceEmbeddingsMetadata(col: Column, embeddingsDim: Int, embeddingsRef: Option[String] = None): Column
    Attributes
    protected
    Definition Classes
    HasEmbeddingsProperties
  148. def write: MLWriter
    Definition Classes
    ParamsAndFeaturesWritable → DefaultParamsWritable → MLWritable
  149. def writeOnnxModel(path: String, spark: SparkSession, onnxWrapper: OnnxWrapper, suffix: String, fileName: String): Unit
    Definition Classes
    WriteOnnxModel
  150. def writeOnnxModels(path: String, spark: SparkSession, onnxWrappersWithNames: Seq[(OnnxWrapper, String)], suffix: String): Unit
    Definition Classes
    WriteOnnxModel
  151. def writeTensorflowHub(path: String, tfPath: String, spark: SparkSession, suffix: String = "_use"): Unit
    Definition Classes
    WriteTensorflowModel
  152. def writeTensorflowModel(path: String, spark: SparkSession, tensorflow: TensorflowWrapper, suffix: String, filename: String, configProtoBytes: Option[Array[Byte]] = None): Unit
    Definition Classes
    WriteTensorflowModel
  153. def writeTensorflowModelV2(path: String, spark: SparkSession, tensorflow: TensorflowWrapper, suffix: String, filename: String, configProtoBytes: Option[Array[Byte]] = None, savedSignatures: Option[Map[String, String]] = None): Unit
    Definition Classes
    WriteTensorflowModel

Inherited from HasEngine

Inherited from HasStorageRef

Inherited from HasEmbeddingsProperties

Inherited from HasProtectedParams

Inherited from WriteOnnxModel

Inherited from WriteTensorflowModel

Inherited from CanBeLazy

Inherited from HasOutputAnnotationCol

Inherited from HasInputAnnotationCols

Inherited from HasOutputAnnotatorType

Inherited from ParamsAndFeaturesWritable

Inherited from HasFeatures

Inherited from DefaultParamsWritable

Inherited from MLWritable

Inherited from Model[RoBertaSentenceEmbeddings]

Inherited from Transformer

Inherited from PipelineStage

Inherited from Logging

Inherited from Params

Inherited from Serializable

Inherited from Serializable

Inherited from Identifiable

Inherited from AnyRef

Inherited from Any

Parameters

A list of (hyper-)parameter keys this annotator can take. Users can set and get the parameter values through setters and getters, respectively.

Annotator types

Required input and expected output annotator types

Members

Parameter setters

Parameter getters