class ElmoEmbeddings extends AnnotatorModel[ElmoEmbeddings] with HasSimpleAnnotate[ElmoEmbeddings] with WriteTensorflowModel with HasEmbeddingsProperties with HasStorageRef with HasCaseSensitiveProperties with HasEngine
Word embeddings from ELMo (Embeddings from Language Models), a language model trained on the 1 Billion Word Benchmark.
Note that this is a very computationally expensive module compared to word embedding modules that only perform embedding lookups. The use of an accelerator is recommended.
Pretrained models can be loaded with pretrained of the companion object:
val embeddings = ElmoEmbeddings.pretrained() .setInputCols("sentence", "token") .setOutputCol("elmo_embeddings")
The default model is "elmo", if no name is provided.
For available pretrained models please see the Models Hub.
The pooling layer can be set with setPoolingLayer to the following values:
"word_emb": the character-based word representations with shape[batch_size, max_length, 512]."lstm_outputs1": the first LSTM hidden state with shape[batch_size, max_length, 1024]."lstm_outputs2": the second LSTM hidden state with shape[batch_size, max_length, 1024]."elmo": the weighted sum of the 3 layers, where the weights are trainable. This tensor has shape[batch_size, max_length, 1024].
For extended examples of usage, see the Examples and the ElmoEmbeddingsTestSpec.
References:
https://tfhub.dev/google/elmo/3
Deep contextualized word representations
Paper abstract:
We introduce a new type of deep contextualized word representation that models both (1) complex characteristics of word use (e.g., syntax and semantics), and (2) how these uses vary across linguistic contexts (i.e., to model polysemy). Our word vectors are learned functions of the internal states of a deep bidirectional language model (biLM), which is pre-trained on a large text corpus. We show that these representations can be easily added to existing models and significantly improve the state of the art across six challenging NLP problems, including question answering, textual entailment and sentiment analysis. We also present an analysis showing that exposing the deep internals of the pre-trained network is crucial, allowing downstream models to mix different types of semi-supervision signals.
Example
import spark.implicits._ import com.johnsnowlabs.nlp.base.DocumentAssembler import com.johnsnowlabs.nlp.annotators.Tokenizer import com.johnsnowlabs.nlp.embeddings.ElmoEmbeddings import com.johnsnowlabs.nlp.EmbeddingsFinisher import org.apache.spark.ml.Pipeline val documentAssembler = new DocumentAssembler() .setInputCol("text") .setOutputCol("document") val tokenizer = new Tokenizer() .setInputCols("document") .setOutputCol("token") val embeddings = ElmoEmbeddings.pretrained() .setPoolingLayer("word_emb") .setInputCols("token", "document") .setOutputCol("embeddings") val embeddingsFinisher = new EmbeddingsFinisher() .setInputCols("embeddings") .setOutputCols("finished_embeddings") .setOutputAsVector(true) .setCleanAnnotations(false) val pipeline = new Pipeline().setStages(Array( documentAssembler, tokenizer, embeddings, embeddingsFinisher )) val data = Seq("This is a sentence.").toDF("text") val result = pipeline.fit(data).transform(data) result.selectExpr("explode(finished_embeddings) as result").show(5, 80) +--------------------------------------------------------------------------------+ | result| +--------------------------------------------------------------------------------+ |[6.662458181381226E-4,-0.2541114091873169,-0.6275503039360046,0.5787073969841...| |[0.19154725968837738,0.22998669743537903,-0.2894386649131775,0.21524395048618...| |[0.10400570929050446,0.12288510054349899,-0.07056470215320587,-0.246389418840...| |[0.49932169914245605,-0.12706467509269714,0.30969417095184326,0.2643227577209...| |[-0.8871506452560425,-0.20039963722229004,-1.0601330995559692,0.0348707810044...| +--------------------------------------------------------------------------------+
- See also
 Annotators Main Page for a list of other transformer based embeddings
- Grouped
 - Alphabetic
 - By Inheritance
 
- ElmoEmbeddings
 - HasEngine
 - HasCaseSensitiveProperties
 - HasStorageRef
 - HasEmbeddingsProperties
 - HasProtectedParams
 - WriteTensorflowModel
 - HasSimpleAnnotate
 - AnnotatorModel
 - CanBeLazy
 - RawAnnotator
 - HasOutputAnnotationCol
 - HasInputAnnotationCols
 - HasOutputAnnotatorType
 - ParamsAndFeaturesWritable
 - HasFeatures
 - DefaultParamsWritable
 - MLWritable
 - Model
 - Transformer
 - PipelineStage
 - Logging
 - Params
 - Serializable
 - Serializable
 - Identifiable
 - AnyRef
 - Any
 
- Hide All
 - Show All
 
- Public
 - All
 
Instance Constructors
Type Members
- 
      
      
      
        
      
    
      
        implicit 
        class
      
      
        ProtectedParam[T] extends Param[T]
      
      
      
- Definition Classes
 - HasProtectedParams
 
 - 
      
      
      
        
      
    
      
        
        type
      
      
        AnnotationContent = Seq[Row]
      
      
      
internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI
internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI
- Attributes
 - protected
 - Definition Classes
 - AnnotatorModel
 
 - 
      
      
      
        
      
    
      
        
        type
      
      
        AnnotatorType = String
      
      
      
- Definition Classes
 - HasOutputAnnotatorType
 
 
Value Members
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        !=(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ##(): Int
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        $[T](param: Param[T]): T
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        $$[T](feature: StructFeature[T]): T
      
      
      
- Attributes
 - protected
 - Definition Classes
 - HasFeatures
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        $$[K, V](feature: MapFeature[K, V]): Map[K, V]
      
      
      
- Attributes
 - protected
 - Definition Classes
 - HasFeatures
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        $$[T](feature: SetFeature[T]): Set[T]
      
      
      
- Attributes
 - protected
 - Definition Classes
 - HasFeatures
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        $$[T](feature: ArrayFeature[T]): Array[T]
      
      
      
- Attributes
 - protected
 - Definition Classes
 - HasFeatures
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ==(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        _transform(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): DataFrame
      
      
      
- Attributes
 - protected
 - Definition Classes
 - AnnotatorModel
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        afterAnnotate(dataset: DataFrame): DataFrame
      
      
      
- Attributes
 - protected
 - Definition Classes
 - ElmoEmbeddings → AnnotatorModel
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        annotate(annotations: Seq[Annotation]): Seq[Annotation]
      
      
      
takes a document and annotations and produces new annotations of this annotator's annotation type
takes a document and annotations and produces new annotations of this annotator's annotation type
- annotations
 Annotations that correspond to inputAnnotationCols generated by previous annotators if any
- returns
 any number of annotations processed for every input annotation. Not necessary one to one relationship
- Definition Classes
 - ElmoEmbeddings → HasSimpleAnnotate
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        asInstanceOf[T0]: T0
      
      
      
- Definition Classes
 - Any
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        batchSize: IntParam
      
      
      
Batch size (Default:
32).Batch size (Default:
32). Large values allows faster processing but requires more memory. - 
      
      
      
        
      
    
      
        
        def
      
      
        beforeAnnotate(dataset: Dataset[_]): Dataset[_]
      
      
      
- Attributes
 - protected
 - Definition Classes
 - AnnotatorModel
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        caseSensitive: BooleanParam
      
      
      
Whether to ignore case in index lookups (Default depends on model)
Whether to ignore case in index lookups (Default depends on model)
- Definition Classes
 - HasCaseSensitiveProperties
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
      
      
      
- Attributes
 - protected
 - Definition Classes
 - HasInputAnnotationCols
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        clear(param: Param[_]): ElmoEmbeddings.this.type
      
      
      
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        clone(): AnyRef
      
      
      
- Attributes
 - protected[lang]
 - Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... ) @native()
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        configProtoBytes: IntArrayParam
      
      
      
ConfigProto from tensorflow, serialized into byte array.
ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()
 - 
      
      
      
        
      
    
      
        
        def
      
      
        copy(extra: ParamMap): ElmoEmbeddings
      
      
      
requirement for annotators copies
requirement for annotators copies
- Definition Classes
 - RawAnnotator → Model → Transformer → PipelineStage → Params
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        copyValues[T <: Params](to: T, extra: ParamMap): T
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        createDatabaseConnection(database: Name): RocksDBConnection
      
      
      
- Definition Classes
 - HasStorageRef
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        defaultCopy[T <: Params](extra: ParamMap): T
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        dfAnnotate: UserDefinedFunction
      
      
      
Wraps annotate to happen inside SparkSQL user defined functions in order to act with org.apache.spark.sql.Column
Wraps annotate to happen inside SparkSQL user defined functions in order to act with org.apache.spark.sql.Column
- returns
 udf function to be applied to inputCols using this annotator's annotate function as part of ML transformation
- Definition Classes
 - HasSimpleAnnotate
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        dimension: ProtectedParam[Int]
      
      
      
Number of embedding dimensions (Default depends on model)
Number of embedding dimensions (Default depends on model)
- Definition Classes
 - HasEmbeddingsProperties
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        engine: Param[String]
      
      
      
This param is set internally once via loadSavedModel.
This param is set internally once via loadSavedModel. That's why there is no setter
- Definition Classes
 - HasEngine
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        eq(arg0: AnyRef): Boolean
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        equals(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        explainParam(param: Param[_]): String
      
      
      
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        explainParams(): String
      
      
      
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        extraValidate(structType: StructType): Boolean
      
      
      
- Attributes
 - protected
 - Definition Classes
 - RawAnnotator
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        extraValidateMsg: String
      
      
      
Override for additional custom schema checks
Override for additional custom schema checks
- Attributes
 - protected
 - Definition Classes
 - RawAnnotator
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        extractParamMap(): ParamMap
      
      
      
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        extractParamMap(extra: ParamMap): ParamMap
      
      
      
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        features: ArrayBuffer[Feature[_, _, _]]
      
      
      
- Definition Classes
 - HasFeatures
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        finalize(): Unit
      
      
      
- Attributes
 - protected[lang]
 - Definition Classes
 - AnyRef
 - Annotations
 - @throws( classOf[java.lang.Throwable] )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        get[T](feature: StructFeature[T]): Option[T]
      
      
      
- Attributes
 - protected
 - Definition Classes
 - HasFeatures
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        get[K, V](feature: MapFeature[K, V]): Option[Map[K, V]]
      
      
      
- Attributes
 - protected
 - Definition Classes
 - HasFeatures
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        get[T](feature: SetFeature[T]): Option[Set[T]]
      
      
      
- Attributes
 - protected
 - Definition Classes
 - HasFeatures
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        get[T](feature: ArrayFeature[T]): Option[Array[T]]
      
      
      
- Attributes
 - protected
 - Definition Classes
 - HasFeatures
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        get[T](param: Param[T]): Option[T]
      
      
      
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        getCaseSensitive: Boolean
      
      
      
- Definition Classes
 - HasCaseSensitiveProperties
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getClass(): Class[_]
      
      
      
- Definition Classes
 - AnyRef → Any
 - Annotations
 - @native()
 
 -  def getConfigProtoBytes: Option[Array[Byte]]
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getDefault[T](param: Param[T]): Option[T]
      
      
      
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        getDimension: Int
      
      
      
- Definition Classes
 - HasEmbeddingsProperties
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        getEngine: String
      
      
      
- Definition Classes
 - HasEngine
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        getInputCols: Array[String]
      
      
      
- returns
 input annotations columns currently used
- Definition Classes
 - HasInputAnnotationCols
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        getLazyAnnotator: Boolean
      
      
      
- Definition Classes
 - CanBeLazy
 
 -  def getModelIfNotSet: Elmo
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getOrDefault[T](param: Param[T]): T
      
      
      
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getOutputCol: String
      
      
      
Gets annotation column name going to generate
Gets annotation column name going to generate
- Definition Classes
 - HasOutputAnnotationCol
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        getParam(paramName: String): Param[Any]
      
      
      
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        getPoolingLayer: String
      
      
      
Function used to set the embedding output layer of the ELMO model
 - 
      
      
      
        
      
    
      
        
        def
      
      
        getStorageRef: String
      
      
      
- Definition Classes
 - HasStorageRef
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        hasDefault[T](param: Param[T]): Boolean
      
      
      
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        hasParam(paramName: String): Boolean
      
      
      
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        hasParent: Boolean
      
      
      
- Definition Classes
 - Model
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        hashCode(): Int
      
      
      
- Definition Classes
 - AnyRef → Any
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        initializeLogIfNecessary(isInterpreter: Boolean): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        inputAnnotatorTypes: Array[String]
      
      
      
Input annotator types : DOCUMENT, TOKEN
Input annotator types : DOCUMENT, TOKEN
- Definition Classes
 - ElmoEmbeddings → HasInputAnnotationCols
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        inputCols: StringArrayParam
      
      
      
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
- Attributes
 - protected
 - Definition Classes
 - HasInputAnnotationCols
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        isDefined(param: Param[_]): Boolean
      
      
      
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        isInstanceOf[T0]: Boolean
      
      
      
- Definition Classes
 - Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        isSet(param: Param[_]): Boolean
      
      
      
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        isTraceEnabled(): Boolean
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        lazyAnnotator: BooleanParam
      
      
      
- Definition Classes
 - CanBeLazy
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        log: Logger
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logDebug(msg: ⇒ String, throwable: Throwable): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logDebug(msg: ⇒ String): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logError(msg: ⇒ String, throwable: Throwable): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logError(msg: ⇒ String): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logInfo(msg: ⇒ String, throwable: Throwable): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logInfo(msg: ⇒ String): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logName: String
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logTrace(msg: ⇒ String, throwable: Throwable): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logTrace(msg: ⇒ String): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logWarning(msg: ⇒ String, throwable: Throwable): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logWarning(msg: ⇒ String): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        msgHelper(schema: StructType): String
      
      
      
- Attributes
 - protected
 - Definition Classes
 - HasInputAnnotationCols
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ne(arg0: AnyRef): Boolean
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        notify(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        notifyAll(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        onWrite(path: String, spark: SparkSession): Unit
      
      
      
- Definition Classes
 - ElmoEmbeddings → ParamsAndFeaturesWritable
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        optionalInputAnnotatorTypes: Array[String]
      
      
      
- Definition Classes
 - HasInputAnnotationCols
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        outputAnnotatorType: AnnotatorType
      
      
      
Output annotator type : WORD_EMBEDDINGS
Output annotator type : WORD_EMBEDDINGS
- Definition Classes
 - ElmoEmbeddings → HasOutputAnnotatorType
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        outputCol: Param[String]
      
      
      
- Attributes
 - protected
 - Definition Classes
 - HasOutputAnnotationCol
 
 - 
      
      
      
        
      
    
      
        
        lazy val
      
      
        params: Array[Param[_]]
      
      
      
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        
        var
      
      
        parent: Estimator[ElmoEmbeddings]
      
      
      
- Definition Classes
 - Model
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        poolingLayer: Param[String]
      
      
      
Set ELMo pooling layer to:
"word_emb","lstm_outputs1","lstm_outputs2", or"elmo"(Default:"word_emb").Set ELMo pooling layer to:
"word_emb","lstm_outputs1","lstm_outputs2", or"elmo"(Default:"word_emb").Possible values are:
"word_emb": the character-based word representations with shape [batch_size, max_length, 512]."lstm_outputs1": the first LSTM hidden state with shape [batch_size, max_length, 1024]."lstm_outputs2": the second LSTM hidden state with shape [batch_size, max_length, 1024]."elmo": the weighted sum of the 3 layers, where the weights are trainable. This tensor has shape [batch_size, max_length, 1024]
 - 
      
      
      
        
      
    
      
        
        def
      
      
        save(path: String): Unit
      
      
      
- Definition Classes
 - MLWritable
 - Annotations
 - @Since( "1.6.0" ) @throws( ... )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        set[T](param: ProtectedParam[T], value: T): ElmoEmbeddings.this.type
      
      
      
Sets the value for a protected Param.
Sets the value for a protected Param.
If the parameter was already set, it will not be set again. Default values do not count as a set value and can be overridden.
- T
 Type of the parameter
- param
 Protected parameter to set
- value
 Value for the parameter
- returns
 This object
- Definition Classes
 - HasProtectedParams
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        set[T](feature: StructFeature[T], value: T): ElmoEmbeddings.this.type
      
      
      
- Attributes
 - protected
 - Definition Classes
 - HasFeatures
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        set[K, V](feature: MapFeature[K, V], value: Map[K, V]): ElmoEmbeddings.this.type
      
      
      
- Attributes
 - protected
 - Definition Classes
 - HasFeatures
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        set[T](feature: SetFeature[T], value: Set[T]): ElmoEmbeddings.this.type
      
      
      
- Attributes
 - protected
 - Definition Classes
 - HasFeatures
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        set[T](feature: ArrayFeature[T], value: Array[T]): ElmoEmbeddings.this.type
      
      
      
- Attributes
 - protected
 - Definition Classes
 - HasFeatures
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        set(paramPair: ParamPair[_]): ElmoEmbeddings.this.type
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        set(param: String, value: Any): ElmoEmbeddings.this.type
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        set[T](param: Param[T], value: T): ElmoEmbeddings.this.type
      
      
      
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setBatchSize(size: Int): ElmoEmbeddings.this.type
      
      
      
Large values allows faster processing but requires more memory.
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setCaseSensitive(value: Boolean): ElmoEmbeddings.this.type
      
      
      
- Definition Classes
 - HasCaseSensitiveProperties
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setConfigProtoBytes(bytes: Array[Int]): ElmoEmbeddings.this.type
      
      
      
ConfigProto from tensorflow, serialized into byte array.
ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setDefault[T](feature: StructFeature[T], value: () ⇒ T): ElmoEmbeddings.this.type
      
      
      
- Attributes
 - protected
 - Definition Classes
 - HasFeatures
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setDefault[K, V](feature: MapFeature[K, V], value: () ⇒ Map[K, V]): ElmoEmbeddings.this.type
      
      
      
- Attributes
 - protected
 - Definition Classes
 - HasFeatures
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setDefault[T](feature: SetFeature[T], value: () ⇒ Set[T]): ElmoEmbeddings.this.type
      
      
      
- Attributes
 - protected
 - Definition Classes
 - HasFeatures
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setDefault[T](feature: ArrayFeature[T], value: () ⇒ Array[T]): ElmoEmbeddings.this.type
      
      
      
- Attributes
 - protected
 - Definition Classes
 - HasFeatures
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        setDefault(paramPairs: ParamPair[_]*): ElmoEmbeddings.this.type
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        setDefault[T](param: Param[T], value: T): ElmoEmbeddings.this.type
      
      
      
- Attributes
 - protected[org.apache.spark.ml]
 - Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setDimension(value: Int): ElmoEmbeddings.this.type
      
      
      
Set Dimension of pooling layer.
Set Dimension of pooling layer. This is meta for the annotation and will not affect the actual embedding calculation.
- Definition Classes
 - ElmoEmbeddings → HasEmbeddingsProperties
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        setInputCols(value: String*): ElmoEmbeddings.this.type
      
      
      
- Definition Classes
 - HasInputAnnotationCols
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setInputCols(value: Array[String]): ElmoEmbeddings.this.type
      
      
      
Overrides required annotators column if different than default
Overrides required annotators column if different than default
- Definition Classes
 - HasInputAnnotationCols
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setLazyAnnotator(value: Boolean): ElmoEmbeddings.this.type
      
      
      
- Definition Classes
 - CanBeLazy
 
 -  def setModelIfNotSet(spark: SparkSession, tensorflow: TensorflowWrapper): ElmoEmbeddings.this.type
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        setOutputCol(value: String): ElmoEmbeddings.this.type
      
      
      
Overrides annotation column name when transforming
Overrides annotation column name when transforming
- Definition Classes
 - HasOutputAnnotationCol
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setParent(parent: Estimator[ElmoEmbeddings]): ElmoEmbeddings
      
      
      
- Definition Classes
 - Model
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setPoolingLayer(layer: String): ElmoEmbeddings.this.type
      
      
      
Function used to set the embedding output layer of the ELMO model
Function used to set the embedding output layer of the ELMO model
- layer
 Layer specification
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setStorageRef(value: String): ElmoEmbeddings.this.type
      
      
      
- Definition Classes
 - HasStorageRef
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        storageRef: Param[String]
      
      
      
Unique identifier for storage (Default:
this.uid)Unique identifier for storage (Default:
this.uid)- Definition Classes
 - HasStorageRef
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        synchronized[T0](arg0: ⇒ T0): T0
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        toString(): String
      
      
      
- Definition Classes
 - Identifiable → AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        transform(dataset: Dataset[_]): DataFrame
      
      
      
Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content
Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content
- dataset
 Dataset[Row]
- Definition Classes
 - AnnotatorModel → Transformer
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame
      
      
      
- Definition Classes
 - Transformer
 - Annotations
 - @Since( "2.0.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame
      
      
      
- Definition Classes
 - Transformer
 - Annotations
 - @Since( "2.0.0" ) @varargs()
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        transformSchema(schema: StructType): StructType
      
      
      
requirement for pipeline transformation validation.
requirement for pipeline transformation validation. It is called on fit()
- Definition Classes
 - RawAnnotator → PipelineStage
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        transformSchema(schema: StructType, logging: Boolean): StructType
      
      
      
- Attributes
 - protected
 - Definition Classes
 - PipelineStage
 - Annotations
 - @DeveloperApi()
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        uid: String
      
      
      
- Definition Classes
 - ElmoEmbeddings → Identifiable
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        validate(schema: StructType): Boolean
      
      
      
takes a Dataset and checks to see if all the required annotation types are present.
takes a Dataset and checks to see if all the required annotation types are present.
- schema
 to be validated
- returns
 True if all the required types are present, else false
- Attributes
 - protected
 - Definition Classes
 - RawAnnotator
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        validateStorageRef(dataset: Dataset[_], inputCols: Array[String], annotatorType: String): Unit
      
      
      
- Definition Classes
 - HasStorageRef
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long, arg1: Int): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... ) @native()
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        wrapColumnMetadata(col: Column): Column
      
      
      
- Attributes
 - protected
 - Definition Classes
 - RawAnnotator
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        wrapEmbeddingsMetadata(col: Column, embeddingsDim: Int, embeddingsRef: Option[String] = None): Column
      
      
      
- Attributes
 - protected
 - Definition Classes
 - HasEmbeddingsProperties
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        wrapSentenceEmbeddingsMetadata(col: Column, embeddingsDim: Int, embeddingsRef: Option[String] = None): Column
      
      
      
- Attributes
 - protected
 - Definition Classes
 - HasEmbeddingsProperties
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        write: MLWriter
      
      
      
- Definition Classes
 - ParamsAndFeaturesWritable → DefaultParamsWritable → MLWritable
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        writeTensorflowHub(path: String, tfPath: String, spark: SparkSession, suffix: String = "_use"): Unit
      
      
      
- Definition Classes
 - WriteTensorflowModel
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        writeTensorflowModel(path: String, spark: SparkSession, tensorflow: TensorflowWrapper, suffix: String, filename: String, configProtoBytes: Option[Array[Byte]] = None): Unit
      
      
      
- Definition Classes
 - WriteTensorflowModel
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        writeTensorflowModelV2(path: String, spark: SparkSession, tensorflow: TensorflowWrapper, suffix: String, filename: String, configProtoBytes: Option[Array[Byte]] = None, savedSignatures: Option[Map[String, String]] = None): Unit
      
      
      
- Definition Classes
 - WriteTensorflowModel
 
 
Inherited from HasEngine
Inherited from HasCaseSensitiveProperties
Inherited from HasStorageRef
Inherited from HasEmbeddingsProperties
Inherited from HasProtectedParams
Inherited from WriteTensorflowModel
Inherited from HasSimpleAnnotate[ElmoEmbeddings]
Inherited from AnnotatorModel[ElmoEmbeddings]
Inherited from CanBeLazy
Inherited from RawAnnotator[ElmoEmbeddings]
Inherited from HasOutputAnnotationCol
Inherited from HasInputAnnotationCols
Inherited from HasOutputAnnotatorType
Inherited from ParamsAndFeaturesWritable
Inherited from HasFeatures
Inherited from DefaultParamsWritable
Inherited from MLWritable
Inherited from Model[ElmoEmbeddings]
Inherited from Transformer
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Parameters
A list of (hyper-)parameter keys this annotator can take. Users can set and get the parameter values through setters and getters, respectively.
Annotator types
Required input and expected output annotator types