class WordEmbeddings extends AnnotatorApproach[WordEmbeddingsModel] with HasStorage with HasEmbeddingsProperties
Word Embeddings lookup annotator that maps tokens to vectors.
For instantiated/pretrained models, see WordEmbeddingsModel.
A custom token lookup dictionary for embeddings can be set with setStoragePath
. Each line of
the provided file needs to have a token, followed by their vector representation, delimited by
a spaces.
... are 0.39658191506190343 0.630968081620067 0.5393722253731201 0.8428180123359783 were 0.7535235923631415 0.9699218875629833 0.10397182122983872 0.11833962569383116 stress 0.0492683418305907 0.9415954572751959 0.47624463167525755 0.16790967216778263 induced 0.1535748762292387 0.33498936903209897 0.9235178224122094 0.1158772920395934 ...
If a token is not found in the dictionary, then the result will be a zero vector of the same dimension. Statistics about the rate of converted tokens, can be retrieved with WordEmbeddingsModel.withCoverageColumn and WordEmbeddingsModel.overallCoverage.
For extended examples of usage, see the Examples and the WordEmbeddingsTestSpec.
Example
In this example, the file random_embeddings_dim4.txt
has the form of the content above.
import spark.implicits._ import com.johnsnowlabs.nlp.base.DocumentAssembler import com.johnsnowlabs.nlp.annotators.Tokenizer import com.johnsnowlabs.nlp.embeddings.WordEmbeddings import com.johnsnowlabs.nlp.util.io.ReadAs import com.johnsnowlabs.nlp.EmbeddingsFinisher import org.apache.spark.ml.Pipeline val documentAssembler = new DocumentAssembler() .setInputCol("text") .setOutputCol("document") val tokenizer = new Tokenizer() .setInputCols(Array("document")) .setOutputCol("token") val embeddings = new WordEmbeddings() .setStoragePath("src/test/resources/random_embeddings_dim4.txt", ReadAs.TEXT) .setStorageRef("glove_4d") .setDimension(4) .setInputCols("document", "token") .setOutputCol("embeddings") val embeddingsFinisher = new EmbeddingsFinisher() .setInputCols("embeddings") .setOutputCols("finished_embeddings") .setOutputAsVector(true) .setCleanAnnotations(false) val pipeline = new Pipeline() .setStages(Array( documentAssembler, tokenizer, embeddings, embeddingsFinisher )) val data = Seq("The patient was diagnosed with diabetes.").toDF("text") val result = pipeline.fit(data).transform(data) result.selectExpr("explode(finished_embeddings) as result").show(false) +----------------------------------------------------------------------------------+ |result | +----------------------------------------------------------------------------------+ |[0.9439099431037903,0.4707513153553009,0.806300163269043,0.16176554560661316] | |[0.7966810464859009,0.5551124811172485,0.8861005902290344,0.28284206986427307] | |[0.025029370561242104,0.35177749395370483,0.052506182342767715,0.1887107789516449]| |[0.08617766946554184,0.8399239182472229,0.5395117998123169,0.7864698767662048] | |[0.6599600911140442,0.16109347343444824,0.6041093468666077,0.8913561105728149] | |[0.5955275893211365,0.01899011991918087,0.4397728443145752,0.8911281824111938] | |[0.9840458631515503,0.7599489092826843,0.9417727589607239,0.8624503016471863] | +----------------------------------------------------------------------------------+
- See also
SentenceEmbeddings to combine embeddings into a sentence-level representation
Annotators Main Page for a list of transformer based embeddings
- Grouped
- Alphabetic
- By Inheritance
- WordEmbeddings
- HasEmbeddingsProperties
- HasProtectedParams
- HasStorage
- HasCaseSensitiveProperties
- HasStorageOptions
- HasStorageRef
- ParamsAndFeaturesWritable
- HasFeatures
- AnnotatorApproach
- CanBeLazy
- DefaultParamsWritable
- MLWritable
- HasOutputAnnotatorType
- HasOutputAnnotationCol
- HasInputAnnotationCols
- Estimator
- PipelineStage
- Logging
- Params
- Serializable
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Parameters
A list of (hyper-)parameter keys this annotator can take. Users can set and get the parameter values through setters and getters, respectively.
-
val
caseSensitive: BooleanParam
Whether to ignore case in index lookups (Default depends on model)
Whether to ignore case in index lookups (Default depends on model)
- Definition Classes
- HasCaseSensitiveProperties
-
val
dimension: ProtectedParam[Int]
Number of embedding dimensions (Default depends on model)
Number of embedding dimensions (Default depends on model)
- Definition Classes
- HasEmbeddingsProperties
-
val
readCacheSize: IntParam
Cache size for items retrieved from storage.
Cache size for items retrieved from storage. Increase for performance but higher memory consumption
-
val
storagePath: ExternalResourceParam
Path to the external resource.
Path to the external resource.
- Definition Classes
- HasStorage
-
val
storageRef: Param[String]
Unique identifier for storage (Default:
this.uid
)Unique identifier for storage (Default:
this.uid
)- Definition Classes
- HasStorageRef
-
val
writeBufferSize: IntParam
Buffer size limit before dumping to disk storage while writing
Annotator types
Required input and expected output annotator types
-
val
inputAnnotatorTypes: Array[String]
Input annotation type : DOCUMENT, TOKEN
Input annotation type : DOCUMENT, TOKEN
- Definition Classes
- WordEmbeddings → HasInputAnnotationCols
-
val
outputAnnotatorType: AnnotatorType
Output annotation type : WORD_EMBEDDINGS
Output annotation type : WORD_EMBEDDINGS
- Definition Classes
- WordEmbeddings → HasOutputAnnotatorType
Members
-
implicit
class
ProtectedParam[T] extends Param[T]
- Definition Classes
- HasProtectedParams
-
type
AnnotatorType = String
- Definition Classes
- HasOutputAnnotatorType
-
def
beforeTraining(spark: SparkSession): Unit
- Definition Classes
- AnnotatorApproach
-
final
def
clear(param: Param[_]): WordEmbeddings.this.type
- Definition Classes
- Params
-
final
def
copy(extra: ParamMap): Estimator[WordEmbeddingsModel]
- Definition Classes
- AnnotatorApproach → Estimator → PipelineStage → Params
-
def
createDatabaseConnection(database: Name): RocksDBConnection
- Definition Classes
- HasStorageRef
-
val
databases: Array[Name]
- Definition Classes
- WordEmbeddings → HasStorage
-
val
description: String
Word Embeddings lookup annotator that maps tokens to vectors
Word Embeddings lookup annotator that maps tokens to vectors
- Definition Classes
- WordEmbeddings → AnnotatorApproach
-
val
enableInMemoryStorage: BooleanParam
- Definition Classes
- HasStorageOptions
-
def
explainParam(param: Param[_]): String
- Definition Classes
- Params
-
def
explainParams(): String
- Definition Classes
- Params
-
final
def
extractParamMap(): ParamMap
- Definition Classes
- Params
-
final
def
extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
-
val
features: ArrayBuffer[Feature[_, _, _]]
- Definition Classes
- HasFeatures
-
final
def
fit(dataset: Dataset[_]): WordEmbeddingsModel
- Definition Classes
- AnnotatorApproach → Estimator
-
def
fit(dataset: Dataset[_], paramMaps: Seq[ParamMap]): Seq[WordEmbeddingsModel]
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" )
-
def
fit(dataset: Dataset[_], paramMap: ParamMap): WordEmbeddingsModel
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" )
-
def
fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): WordEmbeddingsModel
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" ) @varargs()
-
final
def
get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
final
def
getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
def
getEnableInMemoryStorage: Boolean
- Definition Classes
- HasStorageOptions
-
def
getIncludeStorage: Boolean
- Definition Classes
- HasStorageOptions
-
def
getInputCols: Array[String]
- returns
input annotations columns currently used
- Definition Classes
- HasInputAnnotationCols
-
def
getLazyAnnotator: Boolean
- Definition Classes
- CanBeLazy
-
final
def
getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
-
final
def
getOutputCol: String
Gets annotation column name going to generate
Gets annotation column name going to generate
- Definition Classes
- HasOutputAnnotationCol
-
def
getParam(paramName: String): Param[Any]
- Definition Classes
- Params
-
def
getStorageRef: String
- Definition Classes
- HasStorageRef
-
final
def
hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
-
def
hasParam(paramName: String): Boolean
- Definition Classes
- Params
-
val
includeStorage: BooleanParam
- Definition Classes
- HasStorageOptions
-
def
indexStorage(fitDataset: Dataset[_], resource: Option[ExternalResource]): Unit
- Definition Classes
- HasStorage
-
final
def
isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
-
final
def
isSet(param: Param[_]): Boolean
- Definition Classes
- Params
-
val
lazyAnnotator: BooleanParam
- Definition Classes
- CanBeLazy
-
def
onTrained(model: WordEmbeddingsModel, spark: SparkSession): Unit
- Definition Classes
- AnnotatorApproach
-
val
optionalInputAnnotatorTypes: Array[String]
- Definition Classes
- HasInputAnnotationCols
-
lazy val
params: Array[Param[_]]
- Definition Classes
- Params
-
def
save(path: String): Unit
- Definition Classes
- MLWritable
- Annotations
- @Since( "1.6.0" ) @throws( ... )
-
def
set[T](param: ProtectedParam[T], value: T): WordEmbeddings.this.type
Sets the value for a protected Param.
Sets the value for a protected Param.
If the parameter was already set, it will not be set again. Default values do not count as a set value and can be overridden.
- T
Type of the parameter
- param
Protected parameter to set
- value
Value for the parameter
- returns
This object
- Definition Classes
- HasProtectedParams
-
final
def
set[T](param: Param[T], value: T): WordEmbeddings.this.type
- Definition Classes
- Params
-
def
setEnableInMemoryStorage(value: Boolean): WordEmbeddings.this.type
- Definition Classes
- HasStorageOptions
-
def
setIncludeStorage(value: Boolean): WordEmbeddings.this.type
- Definition Classes
- HasStorageOptions
-
final
def
setInputCols(value: String*): WordEmbeddings.this.type
- Definition Classes
- HasInputAnnotationCols
-
def
setInputCols(value: Array[String]): WordEmbeddings.this.type
Overrides required annotators column if different than default
Overrides required annotators column if different than default
- Definition Classes
- HasInputAnnotationCols
-
def
setLazyAnnotator(value: Boolean): WordEmbeddings.this.type
- Definition Classes
- CanBeLazy
-
final
def
setOutputCol(value: String): WordEmbeddings.this.type
Overrides annotation column name when transforming
Overrides annotation column name when transforming
- Definition Classes
- HasOutputAnnotationCol
-
def
setStorageRef(value: String): WordEmbeddings.this.type
- Definition Classes
- HasStorageRef
-
def
toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
-
def
train(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): WordEmbeddingsModel
- Definition Classes
- WordEmbeddings → AnnotatorApproach
-
final
def
transformSchema(schema: StructType): StructType
requirement for pipeline transformation validation.
requirement for pipeline transformation validation. It is called on fit()
- Definition Classes
- AnnotatorApproach → PipelineStage
-
val
uid: String
- Definition Classes
- WordEmbeddings → Identifiable
-
def
validateStorageRef(dataset: Dataset[_], inputCols: Array[String], annotatorType: String): Unit
- Definition Classes
- HasStorageRef
-
def
write: MLWriter
- Definition Classes
- ParamsAndFeaturesWritable → DefaultParamsWritable → MLWritable
Parameter setters
-
def
setCaseSensitive(value: Boolean): WordEmbeddings.this.type
- Definition Classes
- HasCaseSensitiveProperties
-
def
setDimension(value: Int): WordEmbeddings.this.type
- Definition Classes
- HasEmbeddingsProperties
-
def
setReadCacheSize(value: Int): WordEmbeddings.this.type
Cache size for items retrieved from storage.
Cache size for items retrieved from storage. Increase for performance but higher memory consumption.
-
def
setStoragePath(path: String, readAs: util.io.ReadAs.Value): WordEmbeddings.this.type
- Definition Classes
- HasStorage
-
def
setStoragePath(path: String, readAs: String): WordEmbeddings.this.type
- Definition Classes
- HasStorage
-
def
setWriteBufferSize(value: Int): WordEmbeddings.this.type
Buffer size limit before dumping to disk storage while writing.
Parameter getters
-
def
getCaseSensitive: Boolean
- Definition Classes
- HasCaseSensitiveProperties
-
def
getDimension: Int
- Definition Classes
- HasEmbeddingsProperties
-
def
getStoragePath: Option[ExternalResource]
- Definition Classes
- HasStorage