Packages

class MultiClassifierDLModel extends AnnotatorModel[MultiClassifierDLModel] with HasSimpleAnnotate[MultiClassifierDLModel] with WriteTensorflowModel with HasStorageRef with ParamsAndFeaturesWritable with HasEngine

MultiClassifierDL for Multi-label Text Classification.

MultiClassifierDL Bidirectional GRU with Convolution model we have built inside TensorFlow and supports up to 100 classes. The input to MultiClassifierDL is Sentence Embeddings such as state-of-the-art UniversalSentenceEncoder, BertSentenceEmbeddings, or SentenceEmbeddings.

This is the instantiated model of the MultiClassifierDLApproach. For training your own model, please see the documentation of that class.

Pretrained models can be loaded with pretrained of the companion object:

val multiClassifier = MultiClassifierDLModel.pretrained()
  .setInputCols("sentence_embeddings")
  .setOutputCol("categories")

The default model is "multiclassifierdl_use_toxic", if no name is provided. It uses embeddings from the UniversalSentenceEncoder and classifies toxic comments. The data is based on the Jigsaw Toxic Comment Classification Challenge. For available pretrained models please see the Models Hub.

In machine learning, multi-label classification and the strongly related problem of multi-output classification are variants of the classification problem where multiple labels may be assigned to each instance. Multi-label classification is a generalization of multiclass classification, which is the single-label problem of categorizing instances into precisely one of more than two classes; in the multi-label problem there is no constraint on how many of the classes the instance can be assigned to. Formally, multi-label classification is the problem of finding a model that maps inputs x to binary vectors y (assigning a value of 0 or 1 for each element (label) in y).

For extended examples of usage, see the Examples and the MultiClassifierDLTestSpec.

Example

import spark.implicits._
import com.johnsnowlabs.nlp.base.DocumentAssembler
import com.johnsnowlabs.nlp.annotators.classifier.dl.MultiClassifierDLModel
import com.johnsnowlabs.nlp.embeddings.UniversalSentenceEncoder
import org.apache.spark.ml.Pipeline

val documentAssembler = new DocumentAssembler()
  .setInputCol("text")
  .setOutputCol("document")

val useEmbeddings = UniversalSentenceEncoder.pretrained()
  .setInputCols("document")
  .setOutputCol("sentence_embeddings")

val multiClassifierDl = MultiClassifierDLModel.pretrained()
  .setInputCols("sentence_embeddings")
  .setOutputCol("classifications")

val pipeline = new Pipeline()
  .setStages(Array(
    documentAssembler,
    useEmbeddings,
    multiClassifierDl
  ))

val data = Seq(
  "This is pretty good stuff!",
  "Wtf kind of crap is this"
).toDF("text")
val result = pipeline.fit(data).transform(data)

result.select("text", "classifications.result").show(false)
+--------------------------+----------------+
|text                      |result          |
+--------------------------+----------------+
|This is pretty good stuff!|[]              |
|Wtf kind of crap is this  |[toxic, obscene]|
+--------------------------+----------------+
See also

Multi-label classification on Wikipedia

ClassifierDLModel for single-class classification

SentimentDLModel for sentiment analysis

Ordering
  1. Grouped
  2. Alphabetic
  3. By Inheritance
Inherited
  1. MultiClassifierDLModel
  2. HasEngine
  3. HasStorageRef
  4. WriteTensorflowModel
  5. HasSimpleAnnotate
  6. AnnotatorModel
  7. CanBeLazy
  8. RawAnnotator
  9. HasOutputAnnotationCol
  10. HasInputAnnotationCols
  11. HasOutputAnnotatorType
  12. ParamsAndFeaturesWritable
  13. HasFeatures
  14. DefaultParamsWritable
  15. MLWritable
  16. Model
  17. Transformer
  18. PipelineStage
  19. Logging
  20. Params
  21. Serializable
  22. Serializable
  23. Identifiable
  24. AnyRef
  25. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new MultiClassifierDLModel()
  2. new MultiClassifierDLModel(uid: String)

Type Members

  1. type AnnotationContent = Seq[Row]

    internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI

    internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI

    Attributes
    protected
    Definition Classes
    AnnotatorModel
  2. type AnnotatorType = String
    Definition Classes
    HasOutputAnnotatorType

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def $[T](param: Param[T]): T
    Attributes
    protected
    Definition Classes
    Params
  4. def $$[T](feature: StructFeature[T]): T
    Attributes
    protected
    Definition Classes
    HasFeatures
  5. def $$[K, V](feature: MapFeature[K, V]): Map[K, V]
    Attributes
    protected
    Definition Classes
    HasFeatures
  6. def $$[T](feature: SetFeature[T]): Set[T]
    Attributes
    protected
    Definition Classes
    HasFeatures
  7. def $$[T](feature: ArrayFeature[T]): Array[T]
    Attributes
    protected
    Definition Classes
    HasFeatures
  8. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  9. def _transform(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): DataFrame
    Attributes
    protected
    Definition Classes
    AnnotatorModel
  10. def afterAnnotate(dataset: DataFrame): DataFrame
    Attributes
    protected
    Definition Classes
    AnnotatorModel
  11. def annotate(annotations: Seq[Annotation]): Seq[Annotation]

    takes a document and annotations and produces new annotations of this annotator's annotation type

    takes a document and annotations and produces new annotations of this annotator's annotation type

    annotations

    Annotations that correspond to inputAnnotationCols generated by previous annotators if any

    returns

    any number of annotations processed for every input annotation. Not necessary one to one relationship

    Definition Classes
    MultiClassifierDLModelHasSimpleAnnotate
  12. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  13. def beforeAnnotate(dataset: Dataset[_]): Dataset[_]
    Attributes
    protected
    Definition Classes
    MultiClassifierDLModelAnnotatorModel
  14. final def checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
    Attributes
    protected
    Definition Classes
    HasInputAnnotationCols
  15. val classes: StringArrayParam
  16. final def clear(param: Param[_]): MultiClassifierDLModel.this.type
    Definition Classes
    Params
  17. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  18. val configProtoBytes: IntArrayParam

    ConfigProto from tensorflow, serialized into byte array.

    ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()

  19. def copy(extra: ParamMap): MultiClassifierDLModel

    requirement for annotators copies

    requirement for annotators copies

    Definition Classes
    RawAnnotator → Model → Transformer → PipelineStage → Params
  20. def copyValues[T <: Params](to: T, extra: ParamMap): T
    Attributes
    protected
    Definition Classes
    Params
  21. def createDatabaseConnection(database: Name): RocksDBConnection
    Definition Classes
    HasStorageRef
  22. val datasetParams: StructFeature[ClassifierDatasetEncoderParams]

    Dataset params

  23. final def defaultCopy[T <: Params](extra: ParamMap): T
    Attributes
    protected
    Definition Classes
    Params
  24. def dfAnnotate: UserDefinedFunction

    Wraps annotate to happen inside SparkSQL user defined functions in order to act with org.apache.spark.sql.Column

    Wraps annotate to happen inside SparkSQL user defined functions in order to act with org.apache.spark.sql.Column

    returns

    udf function to be applied to inputCols using this annotator's annotate function as part of ML transformation

    Definition Classes
    HasSimpleAnnotate
  25. val engine: Param[String]

    This param is set internally once via loadSavedModel.

    This param is set internally once via loadSavedModel. That's why there is no setter

    Definition Classes
    HasEngine
  26. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  27. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  28. def explainParam(param: Param[_]): String
    Definition Classes
    Params
  29. def explainParams(): String
    Definition Classes
    Params
  30. def extraValidate(structType: StructType): Boolean
    Attributes
    protected
    Definition Classes
    RawAnnotator
  31. def extraValidateMsg: String

    Override for additional custom schema checks

    Override for additional custom schema checks

    Attributes
    protected
    Definition Classes
    RawAnnotator
  32. final def extractParamMap(): ParamMap
    Definition Classes
    Params
  33. final def extractParamMap(extra: ParamMap): ParamMap
    Definition Classes
    Params
  34. val features: ArrayBuffer[Feature[_, _, _]]
    Definition Classes
    HasFeatures
  35. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  36. def get[T](feature: StructFeature[T]): Option[T]
    Attributes
    protected
    Definition Classes
    HasFeatures
  37. def get[K, V](feature: MapFeature[K, V]): Option[Map[K, V]]
    Attributes
    protected
    Definition Classes
    HasFeatures
  38. def get[T](feature: SetFeature[T]): Option[Set[T]]
    Attributes
    protected
    Definition Classes
    HasFeatures
  39. def get[T](feature: ArrayFeature[T]): Option[Array[T]]
    Attributes
    protected
    Definition Classes
    HasFeatures
  40. final def get[T](param: Param[T]): Option[T]
    Definition Classes
    Params
  41. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  42. def getClasses: Array[String]
  43. def getConfigProtoBytes: Option[Array[Byte]]

    Tensorflow config Protobytes passed to the TF session

  44. final def getDefault[T](param: Param[T]): Option[T]
    Definition Classes
    Params
  45. def getEngine: String

    Definition Classes
    HasEngine
  46. def getInputCols: Array[String]

    returns

    input annotations columns currently used

    Definition Classes
    HasInputAnnotationCols
  47. def getLazyAnnotator: Boolean
    Definition Classes
    CanBeLazy
  48. def getModelIfNotSet: TensorflowMultiClassifier
  49. final def getOrDefault[T](param: Param[T]): T
    Definition Classes
    Params
  50. final def getOutputCol: String

    Gets annotation column name going to generate

    Gets annotation column name going to generate

    Definition Classes
    HasOutputAnnotationCol
  51. def getParam(paramName: String): Param[Any]
    Definition Classes
    Params
  52. def getStorageRef: String
    Definition Classes
    HasStorageRef
  53. def getThreshold: Float

    The minimum threshold for each label to be accepted (Default: 0.5f)

  54. final def hasDefault[T](param: Param[T]): Boolean
    Definition Classes
    Params
  55. def hasParam(paramName: String): Boolean
    Definition Classes
    Params
  56. def hasParent: Boolean
    Definition Classes
    Model
  57. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  58. def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
    Attributes
    protected
    Definition Classes
    Logging
  59. def initializeLogIfNecessary(isInterpreter: Boolean): Unit
    Attributes
    protected
    Definition Classes
    Logging
  60. val inputAnnotatorTypes: Array[AnnotatorType]

    Output annotator type : SENTENCE_EMBEDDINGS

    Output annotator type : SENTENCE_EMBEDDINGS

    Definition Classes
    MultiClassifierDLModelHasInputAnnotationCols
  61. final val inputCols: StringArrayParam

    columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified

    columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified

    Attributes
    protected
    Definition Classes
    HasInputAnnotationCols
  62. final def isDefined(param: Param[_]): Boolean
    Definition Classes
    Params
  63. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  64. final def isSet(param: Param[_]): Boolean
    Definition Classes
    Params
  65. def isTraceEnabled(): Boolean
    Attributes
    protected
    Definition Classes
    Logging
  66. val lazyAnnotator: BooleanParam
    Definition Classes
    CanBeLazy
  67. def log: Logger
    Attributes
    protected
    Definition Classes
    Logging
  68. def logDebug(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  69. def logDebug(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  70. def logError(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  71. def logError(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  72. def logInfo(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  73. def logInfo(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  74. def logName: String
    Attributes
    protected
    Definition Classes
    Logging
  75. def logTrace(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  76. def logTrace(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  77. def logWarning(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  78. def logWarning(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  79. def msgHelper(schema: StructType): String
    Attributes
    protected
    Definition Classes
    HasInputAnnotationCols
  80. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  81. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  82. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  83. def onWrite(path: String, spark: SparkSession): Unit
  84. val optionalInputAnnotatorTypes: Array[String]
    Definition Classes
    HasInputAnnotationCols
  85. val outputAnnotatorType: String

    Output annotator type : CATEGORY

    Output annotator type : CATEGORY

    Definition Classes
    MultiClassifierDLModelHasOutputAnnotatorType
  86. final val outputCol: Param[String]
    Attributes
    protected
    Definition Classes
    HasOutputAnnotationCol
  87. lazy val params: Array[Param[_]]
    Definition Classes
    Params
  88. var parent: Estimator[MultiClassifierDLModel]
    Definition Classes
    Model
  89. def save(path: String): Unit
    Definition Classes
    MLWritable
    Annotations
    @Since( "1.6.0" ) @throws( ... )
  90. def set[T](feature: StructFeature[T], value: T): MultiClassifierDLModel.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  91. def set[K, V](feature: MapFeature[K, V], value: Map[K, V]): MultiClassifierDLModel.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  92. def set[T](feature: SetFeature[T], value: Set[T]): MultiClassifierDLModel.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  93. def set[T](feature: ArrayFeature[T], value: Array[T]): MultiClassifierDLModel.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  94. final def set(paramPair: ParamPair[_]): MultiClassifierDLModel.this.type
    Attributes
    protected
    Definition Classes
    Params
  95. final def set(param: String, value: Any): MultiClassifierDLModel.this.type
    Attributes
    protected
    Definition Classes
    Params
  96. final def set[T](param: Param[T], value: T): MultiClassifierDLModel.this.type
    Definition Classes
    Params
  97. def setConfigProtoBytes(bytes: Array[Int]): MultiClassifierDLModel.this.type

    Tensorflow config Protobytes passed to the TF session

  98. def setDatasetParams(params: ClassifierDatasetEncoderParams): MultiClassifierDLModel.this.type

    Dataset params

  99. def setDefault[T](feature: StructFeature[T], value: () ⇒ T): MultiClassifierDLModel.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  100. def setDefault[K, V](feature: MapFeature[K, V], value: () ⇒ Map[K, V]): MultiClassifierDLModel.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  101. def setDefault[T](feature: SetFeature[T], value: () ⇒ Set[T]): MultiClassifierDLModel.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  102. def setDefault[T](feature: ArrayFeature[T], value: () ⇒ Array[T]): MultiClassifierDLModel.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  103. final def setDefault(paramPairs: ParamPair[_]*): MultiClassifierDLModel.this.type
    Attributes
    protected
    Definition Classes
    Params
  104. final def setDefault[T](param: Param[T], value: T): MultiClassifierDLModel.this.type
    Attributes
    protected[org.apache.spark.ml]
    Definition Classes
    Params
  105. final def setInputCols(value: String*): MultiClassifierDLModel.this.type
    Definition Classes
    HasInputAnnotationCols
  106. def setInputCols(value: Array[String]): MultiClassifierDLModel.this.type

    Overrides required annotators column if different than default

    Overrides required annotators column if different than default

    Definition Classes
    HasInputAnnotationCols
  107. def setLazyAnnotator(value: Boolean): MultiClassifierDLModel.this.type
    Definition Classes
    CanBeLazy
  108. def setModelIfNotSet(spark: SparkSession, tf: TensorflowWrapper): MultiClassifierDLModel.this.type
  109. final def setOutputCol(value: String): MultiClassifierDLModel.this.type

    Overrides annotation column name when transforming

    Overrides annotation column name when transforming

    Definition Classes
    HasOutputAnnotationCol
  110. def setParent(parent: Estimator[MultiClassifierDLModel]): MultiClassifierDLModel
    Definition Classes
    Model
  111. def setStorageRef(value: String): MultiClassifierDLModel.this.type
    Definition Classes
    HasStorageRef
  112. def setThreshold(threshold: Float): MultiClassifierDLModel.this.type

    The minimum threshold for each label to be accepted (Default: 0.5f)

  113. val storageRef: Param[String]

    Unique identifier for storage (Default: this.uid)

    Unique identifier for storage (Default: this.uid)

    Definition Classes
    HasStorageRef
  114. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  115. val threshold: FloatParam

    The minimum threshold for each label to be accepted (Default: 0.5f)

  116. def toString(): String
    Definition Classes
    Identifiable → AnyRef → Any
  117. final def transform(dataset: Dataset[_]): DataFrame

    Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content

    Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content

    dataset

    Dataset[Row]

    Definition Classes
    AnnotatorModel → Transformer
  118. def transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame
    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" )
  119. def transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame
    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" ) @varargs()
  120. final def transformSchema(schema: StructType): StructType

    requirement for pipeline transformation validation.

    requirement for pipeline transformation validation. It is called on fit()

    Definition Classes
    RawAnnotator → PipelineStage
  121. def transformSchema(schema: StructType, logging: Boolean): StructType
    Attributes
    protected
    Definition Classes
    PipelineStage
    Annotations
    @DeveloperApi()
  122. val uid: String
    Definition Classes
    MultiClassifierDLModel → Identifiable
  123. def validate(schema: StructType): Boolean

    takes a Dataset and checks to see if all the required annotation types are present.

    takes a Dataset and checks to see if all the required annotation types are present.

    schema

    to be validated

    returns

    True if all the required types are present, else false

    Attributes
    protected
    Definition Classes
    RawAnnotator
  124. def validateStorageRef(dataset: Dataset[_], inputCols: Array[String], annotatorType: String): Unit
    Definition Classes
    HasStorageRef
  125. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  126. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  127. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  128. def wrapColumnMetadata(col: Column): Column
    Attributes
    protected
    Definition Classes
    RawAnnotator
  129. def write: MLWriter
    Definition Classes
    ParamsAndFeaturesWritable → DefaultParamsWritable → MLWritable
  130. def writeTensorflowHub(path: String, tfPath: String, spark: SparkSession, suffix: String = "_use"): Unit
    Definition Classes
    WriteTensorflowModel
  131. def writeTensorflowModel(path: String, spark: SparkSession, tensorflow: TensorflowWrapper, suffix: String, filename: String, configProtoBytes: Option[Array[Byte]] = None): Unit
    Definition Classes
    WriteTensorflowModel
  132. def writeTensorflowModelV2(path: String, spark: SparkSession, tensorflow: TensorflowWrapper, suffix: String, filename: String, configProtoBytes: Option[Array[Byte]] = None, savedSignatures: Option[Map[String, String]] = None): Unit
    Definition Classes
    WriteTensorflowModel

Inherited from HasEngine

Inherited from HasStorageRef

Inherited from WriteTensorflowModel

Inherited from CanBeLazy

Inherited from HasOutputAnnotationCol

Inherited from HasInputAnnotationCols

Inherited from HasOutputAnnotatorType

Inherited from ParamsAndFeaturesWritable

Inherited from HasFeatures

Inherited from DefaultParamsWritable

Inherited from MLWritable

Inherited from Model[MultiClassifierDLModel]

Inherited from Transformer

Inherited from PipelineStage

Inherited from Logging

Inherited from Params

Inherited from Serializable

Inherited from Serializable

Inherited from Identifiable

Inherited from AnyRef

Inherited from Any

Parameters

A list of (hyper-)parameter keys this annotator can take. Users can set and get the parameter values through setters and getters, respectively.

Annotator types

Required input and expected output annotator types

Members

Parameter setters

Parameter getters