Packages

class BertForMultipleChoice extends AnnotatorModel[BertForMultipleChoice] with HasBatchedAnnotate[BertForMultipleChoice] with WriteOnnxModel with WriteOpenvinoModel with HasCaseSensitiveProperties with HasEngine

BertForMultipleChoice can load BERT Models with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks.

Pretrained models can be loaded with pretrained of the companion object:

val spanClassifier = BertForMultipleChoice.pretrained()
  .setInputCols(Array("document_question", "document_context"))
  .setOutputCol("answer")

The default model is "bert_base_uncased_multiple_choice", if no name is provided.

For available pretrained models please see the Models Hub.

Models from the HuggingFace 🤗 Transformers library are also compatible with Spark NLP 🚀. To see which models are compatible and how to import them see https://github.com/JohnSnowLabs/spark-nlp/discussions/5669 and to see more extended examples, see BertForMultipleChoiceTestSpec.

Example

import spark.implicits._
import com.johnsnowlabs.nlp.base._
import com.johnsnowlabs.nlp.annotator._
import org.apache.spark.ml.Pipeline

val document = new MultiDocumentAssembler()
  .setInputCols("question", "context")
  .setOutputCols("document_question", "document_context")

val questionAnswering = BertForMultipleChoice.pretrained()
  .setInputCols(Array("document_question", "document_context"))
  .setOutputCol("answer")
  .setCaseSensitive(false)

val pipeline = new Pipeline().setStages(Array(
  document,
  questionAnswering
))

val data = Seq("The Eiffel Tower is located in which country?", "Germany, France, Italy").toDF("question", "context")
val result = pipeline.fit(data).transform(data)

result.select("answer.result").show(false)
+---------------------+
|result               |
+---------------------+
|[France]              |
++--------------------+
See also

BertForQuestionAnswering for Question Answering tasks

Annotators Main Page for a list of transformer based classifiers

Ordering
  1. Grouped
  2. Alphabetic
  3. By Inheritance
Inherited
  1. BertForMultipleChoice
  2. HasEngine
  3. HasCaseSensitiveProperties
  4. WriteOpenvinoModel
  5. WriteOnnxModel
  6. HasBatchedAnnotate
  7. AnnotatorModel
  8. CanBeLazy
  9. RawAnnotator
  10. HasOutputAnnotationCol
  11. HasInputAnnotationCols
  12. HasOutputAnnotatorType
  13. ParamsAndFeaturesWritable
  14. HasFeatures
  15. DefaultParamsWritable
  16. MLWritable
  17. Model
  18. Transformer
  19. PipelineStage
  20. Logging
  21. Params
  22. Serializable
  23. Serializable
  24. Identifiable
  25. AnyRef
  26. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new BertForMultipleChoice()

    Annotator reference id.

    Annotator reference id. Used to identify elements in metadata or to refer to this annotator type

  2. new BertForMultipleChoice(uid: String)

    uid

    required uid for storing annotator to disk

Type Members

  1. type AnnotationContent = Seq[Row]

    internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI

    internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI

    Attributes
    protected
    Definition Classes
    AnnotatorModel
  2. type AnnotatorType = String
    Definition Classes
    HasOutputAnnotatorType

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def $[T](param: Param[T]): T
    Attributes
    protected
    Definition Classes
    Params
  4. def $$[T](feature: StructFeature[T]): T
    Attributes
    protected
    Definition Classes
    HasFeatures
  5. def $$[K, V](feature: MapFeature[K, V]): Map[K, V]
    Attributes
    protected
    Definition Classes
    HasFeatures
  6. def $$[T](feature: SetFeature[T]): Set[T]
    Attributes
    protected
    Definition Classes
    HasFeatures
  7. def $$[T](feature: ArrayFeature[T]): Array[T]
    Attributes
    protected
    Definition Classes
    HasFeatures
  8. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  9. def _transform(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): DataFrame
    Attributes
    protected
    Definition Classes
    AnnotatorModel
  10. def afterAnnotate(dataset: DataFrame): DataFrame
    Attributes
    protected
    Definition Classes
    AnnotatorModel
  11. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  12. def batchAnnotate(batchedAnnotations: Seq[Array[Annotation]]): Seq[Seq[Annotation]]

    takes a document and annotations and produces new annotations of this annotator's annotation type

    takes a document and annotations and produces new annotations of this annotator's annotation type

    batchedAnnotations

    Annotations in batches that correspond to inputAnnotationCols generated by previous annotators if any

    returns

    any number of annotations processed for every batch of input annotations. Not necessary one to one relationship IMPORTANT: !MUST! return sequences of equal lengths !! IMPORTANT: !MUST! return sentences that belong to the same original row !! (challenging)

    Definition Classes
    BertForMultipleChoiceHasBatchedAnnotate
  13. def batchProcess(rows: Iterator[_]): Iterator[Row]
    Definition Classes
    HasBatchedAnnotate
  14. val batchSize: IntParam

    Size of every batch (Default depends on model).

    Size of every batch (Default depends on model).

    Definition Classes
    HasBatchedAnnotate
  15. def beforeAnnotate(dataset: Dataset[_]): Dataset[_]
    Attributes
    protected
    Definition Classes
    AnnotatorModel
  16. val caseSensitive: BooleanParam

    Whether to ignore case in index lookups (Default depends on model)

    Whether to ignore case in index lookups (Default depends on model)

    Definition Classes
    HasCaseSensitiveProperties
  17. final def checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
    Attributes
    protected
    Definition Classes
    HasInputAnnotationCols
  18. val choicesDelimiter: Param[String]
  19. final def clear(param: Param[_]): BertForMultipleChoice.this.type
    Definition Classes
    Params
  20. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  21. def copy(extra: ParamMap): BertForMultipleChoice

    requirement for annotators copies

    requirement for annotators copies

    Definition Classes
    RawAnnotator → Model → Transformer → PipelineStage → Params
  22. def copyValues[T <: Params](to: T, extra: ParamMap): T
    Attributes
    protected
    Definition Classes
    Params
  23. final def defaultCopy[T <: Params](extra: ParamMap): T
    Attributes
    protected
    Definition Classes
    Params
  24. val engine: Param[String]

    This param is set internally once via loadSavedModel.

    This param is set internally once via loadSavedModel. That's why there is no setter

    Definition Classes
    HasEngine
  25. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  26. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  27. def explainParam(param: Param[_]): String
    Definition Classes
    Params
  28. def explainParams(): String
    Definition Classes
    Params
  29. def extraValidate(structType: StructType): Boolean
    Attributes
    protected
    Definition Classes
    RawAnnotator
  30. def extraValidateMsg: String

    Override for additional custom schema checks

    Override for additional custom schema checks

    Attributes
    protected
    Definition Classes
    RawAnnotator
  31. final def extractParamMap(): ParamMap
    Definition Classes
    Params
  32. final def extractParamMap(extra: ParamMap): ParamMap
    Definition Classes
    Params
  33. val features: ArrayBuffer[Feature[_, _, _]]
    Definition Classes
    HasFeatures
  34. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  35. def get[T](feature: StructFeature[T]): Option[T]
    Attributes
    protected
    Definition Classes
    HasFeatures
  36. def get[K, V](feature: MapFeature[K, V]): Option[Map[K, V]]
    Attributes
    protected
    Definition Classes
    HasFeatures
  37. def get[T](feature: SetFeature[T]): Option[Set[T]]
    Attributes
    protected
    Definition Classes
    HasFeatures
  38. def get[T](feature: ArrayFeature[T]): Option[Array[T]]
    Attributes
    protected
    Definition Classes
    HasFeatures
  39. final def get[T](param: Param[T]): Option[T]
    Definition Classes
    Params
  40. def getBatchSize: Int

    Size of every batch.

    Size of every batch.

    Definition Classes
    HasBatchedAnnotate
  41. def getCaseSensitive: Boolean

    Definition Classes
    HasCaseSensitiveProperties
  42. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  43. final def getDefault[T](param: Param[T]): Option[T]
    Definition Classes
    Params
  44. def getEngine: String

    Definition Classes
    HasEngine
  45. def getInputCols: Array[String]

    returns

    input annotations columns currently used

    Definition Classes
    HasInputAnnotationCols
  46. def getLazyAnnotator: Boolean
    Definition Classes
    CanBeLazy
  47. def getModelIfNotSet: BertClassification

  48. final def getOrDefault[T](param: Param[T]): T
    Definition Classes
    Params
  49. final def getOutputCol: String

    Gets annotation column name going to generate

    Gets annotation column name going to generate

    Definition Classes
    HasOutputAnnotationCol
  50. def getParam(paramName: String): Param[Any]
    Definition Classes
    Params
  51. final def hasDefault[T](param: Param[T]): Boolean
    Definition Classes
    Params
  52. def hasParam(paramName: String): Boolean
    Definition Classes
    Params
  53. def hasParent: Boolean
    Definition Classes
    Model
  54. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  55. def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
    Attributes
    protected
    Definition Classes
    Logging
  56. def initializeLogIfNecessary(isInterpreter: Boolean): Unit
    Attributes
    protected
    Definition Classes
    Logging
  57. val inputAnnotatorTypes: Array[AnnotatorType]

    Annotator reference id.

    Annotator reference id. Used to identify elements in metadata or to refer to this annotator type

    Definition Classes
    BertForMultipleChoiceHasInputAnnotationCols
  58. final val inputCols: StringArrayParam

    columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified

    columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified

    Attributes
    protected
    Definition Classes
    HasInputAnnotationCols
  59. final def isDefined(param: Param[_]): Boolean
    Definition Classes
    Params
  60. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  61. final def isSet(param: Param[_]): Boolean
    Definition Classes
    Params
  62. def isTraceEnabled(): Boolean
    Attributes
    protected
    Definition Classes
    Logging
  63. val lazyAnnotator: BooleanParam
    Definition Classes
    CanBeLazy
  64. def log: Logger
    Attributes
    protected
    Definition Classes
    Logging
  65. def logDebug(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  66. def logDebug(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  67. def logError(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  68. def logError(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  69. def logInfo(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  70. def logInfo(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  71. def logName: String
    Attributes
    protected
    Definition Classes
    Logging
  72. def logTrace(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  73. def logTrace(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  74. def logWarning(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  75. def logWarning(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  76. val maxSentenceLength: IntParam

    Max sentence length to process (Default: 512)

  77. def msgHelper(schema: StructType): String
    Attributes
    protected
    Definition Classes
    HasInputAnnotationCols
  78. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  79. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  80. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  81. def onWrite(path: String, spark: SparkSession): Unit
  82. val optionalInputAnnotatorTypes: Array[String]
    Definition Classes
    HasInputAnnotationCols
  83. val outputAnnotatorType: AnnotatorType
  84. final val outputCol: Param[String]
    Attributes
    protected
    Definition Classes
    HasOutputAnnotationCol
  85. lazy val params: Array[Param[_]]
    Definition Classes
    Params
  86. var parent: Estimator[BertForMultipleChoice]
    Definition Classes
    Model
  87. def save(path: String): Unit
    Definition Classes
    MLWritable
    Annotations
    @Since( "1.6.0" ) @throws( ... )
  88. def sentenceEndTokenId: Int

  89. def sentenceStartTokenId: Int

  90. def set[T](feature: StructFeature[T], value: T): BertForMultipleChoice.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  91. def set[K, V](feature: MapFeature[K, V], value: Map[K, V]): BertForMultipleChoice.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  92. def set[T](feature: SetFeature[T], value: Set[T]): BertForMultipleChoice.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  93. def set[T](feature: ArrayFeature[T], value: Array[T]): BertForMultipleChoice.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  94. final def set(paramPair: ParamPair[_]): BertForMultipleChoice.this.type
    Attributes
    protected
    Definition Classes
    Params
  95. final def set(param: String, value: Any): BertForMultipleChoice.this.type
    Attributes
    protected
    Definition Classes
    Params
  96. final def set[T](param: Param[T], value: T): BertForMultipleChoice.this.type
    Definition Classes
    Params
  97. def setBatchSize(size: Int): BertForMultipleChoice.this.type

    Size of every batch.

    Size of every batch.

    Definition Classes
    HasBatchedAnnotate
  98. def setCaseSensitive(value: Boolean): BertForMultipleChoice.this.type

    Definition Classes
    HasCaseSensitiveProperties
  99. def setChoicesDelimiter(value: String): BertForMultipleChoice.this.type
  100. def setDefault[T](feature: StructFeature[T], value: () ⇒ T): BertForMultipleChoice.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  101. def setDefault[K, V](feature: MapFeature[K, V], value: () ⇒ Map[K, V]): BertForMultipleChoice.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  102. def setDefault[T](feature: SetFeature[T], value: () ⇒ Set[T]): BertForMultipleChoice.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  103. def setDefault[T](feature: ArrayFeature[T], value: () ⇒ Array[T]): BertForMultipleChoice.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  104. final def setDefault(paramPairs: ParamPair[_]*): BertForMultipleChoice.this.type
    Attributes
    protected
    Definition Classes
    Params
  105. final def setDefault[T](param: Param[T], value: T): BertForMultipleChoice.this.type
    Attributes
    protected[org.apache.spark.ml]
    Definition Classes
    Params
  106. final def setInputCols(value: String*): BertForMultipleChoice.this.type
    Definition Classes
    HasInputAnnotationCols
  107. def setInputCols(value: Array[String]): BertForMultipleChoice.this.type

    Overrides required annotators column if different than default

    Overrides required annotators column if different than default

    Definition Classes
    HasInputAnnotationCols
  108. def setLazyAnnotator(value: Boolean): BertForMultipleChoice.this.type
    Definition Classes
    CanBeLazy
  109. def setMaxSentenceLength(value: Int): BertForMultipleChoice.this.type

  110. def setModelIfNotSet(spark: SparkSession, tensorflowWrapper: Option[TensorflowWrapper], onnxWrapper: Option[OnnxWrapper], openvinoWrapper: Option[OpenvinoWrapper]): BertForMultipleChoice

  111. final def setOutputCol(value: String): BertForMultipleChoice.this.type

    Overrides annotation column name when transforming

    Overrides annotation column name when transforming

    Definition Classes
    HasOutputAnnotationCol
  112. def setParent(parent: Estimator[BertForMultipleChoice]): BertForMultipleChoice
    Definition Classes
    Model
  113. def setVocabulary(value: Map[String, Int]): BertForMultipleChoice.this.type

  114. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  115. def toString(): String
    Definition Classes
    Identifiable → AnyRef → Any
  116. final def transform(dataset: Dataset[_]): DataFrame

    Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content

    Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content

    dataset

    Dataset[Row]

    Definition Classes
    AnnotatorModel → Transformer
  117. def transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame
    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" )
  118. def transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame
    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" ) @varargs()
  119. final def transformSchema(schema: StructType): StructType

    requirement for pipeline transformation validation.

    requirement for pipeline transformation validation. It is called on fit()

    Definition Classes
    RawAnnotator → PipelineStage
  120. def transformSchema(schema: StructType, logging: Boolean): StructType
    Attributes
    protected
    Definition Classes
    PipelineStage
    Annotations
    @DeveloperApi()
  121. val uid: String
    Definition Classes
    BertForMultipleChoice → Identifiable
  122. def validate(schema: StructType): Boolean

    takes a Dataset and checks to see if all the required annotation types are present.

    takes a Dataset and checks to see if all the required annotation types are present.

    schema

    to be validated

    returns

    True if all the required types are present, else false

    Attributes
    protected
    Definition Classes
    RawAnnotator
  123. val vocabulary: MapFeature[String, Int]

    Vocabulary used to encode the words to ids with WordPieceEncoder

  124. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  125. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  126. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  127. def wrapColumnMetadata(col: Column): Column
    Attributes
    protected
    Definition Classes
    RawAnnotator
  128. def write: MLWriter
    Definition Classes
    ParamsAndFeaturesWritable → DefaultParamsWritable → MLWritable
  129. def writeOnnxModel(path: String, spark: SparkSession, onnxWrapper: OnnxWrapper, suffix: String, fileName: String): Unit
    Definition Classes
    WriteOnnxModel
  130. def writeOnnxModels(path: String, spark: SparkSession, onnxWrappersWithNames: Seq[(OnnxWrapper, String)], suffix: String): Unit
    Definition Classes
    WriteOnnxModel
  131. def writeOpenvinoModel(path: String, spark: SparkSession, openvinoWrapper: OpenvinoWrapper, suffix: String, fileName: String): Unit
    Definition Classes
    WriteOpenvinoModel
  132. def writeOpenvinoModels(path: String, spark: SparkSession, ovWrappersWithNames: Seq[(OpenvinoWrapper, String)], suffix: String): Unit
    Definition Classes
    WriteOpenvinoModel

Inherited from HasEngine

Inherited from WriteOpenvinoModel

Inherited from WriteOnnxModel

Inherited from CanBeLazy

Inherited from HasOutputAnnotationCol

Inherited from HasInputAnnotationCols

Inherited from HasOutputAnnotatorType

Inherited from ParamsAndFeaturesWritable

Inherited from HasFeatures

Inherited from DefaultParamsWritable

Inherited from MLWritable

Inherited from Model[BertForMultipleChoice]

Inherited from Transformer

Inherited from PipelineStage

Inherited from Logging

Inherited from Params

Inherited from Serializable

Inherited from Serializable

Inherited from Identifiable

Inherited from AnyRef

Inherited from Any

Parameters

A list of (hyper-)parameter keys this annotator can take. Users can set and get the parameter values through setters and getters, respectively.

Members

Parameter setters

Parameter getters