Packages

class AlbertForTokenClassification extends AnnotatorModel[AlbertForTokenClassification] with HasBatchedAnnotate[AlbertForTokenClassification] with WriteTensorflowModel with WriteOnnxModel with WriteSentencePieceModel with HasCaseSensitiveProperties with HasEngine

AlbertForTokenClassification can load ALBERT Models with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks.

Pretrained models can be loaded with pretrained of the companion object:

val tokenClassifier = AlbertForTokenClassification.pretrained()
  .setInputCols("token", "document")
  .setOutputCol("label")

The default model is "albert_base_token_classifier_conll03", if no name is provided.

For available pretrained models please see the Models Hub.

and the AlbertForTokenClassificationTestSpec. To see which models are compatible and how to import them see https://github.com/JohnSnowLabs/spark-nlp/discussions/5669.

Example

import spark.implicits._
import com.johnsnowlabs.nlp.base._
import com.johnsnowlabs.nlp.annotator._
import org.apache.spark.ml.Pipeline

val documentAssembler = new DocumentAssembler()
  .setInputCol("text")
  .setOutputCol("document")

val tokenizer = new Tokenizer()
  .setInputCols("document")
  .setOutputCol("token")

val tokenClassifier = AlbertForTokenClassification.pretrained()
  .setInputCols("token", "document")
  .setOutputCol("label")
  .setCaseSensitive(true)

val pipeline = new Pipeline().setStages(Array(
  documentAssembler,
  tokenizer,
  tokenClassifier
))

val data = Seq("John Lenon was born in London and lived in Paris. My name is Sarah and I live in London").toDF("text")
val result = pipeline.fit(data).transform(data)

result.select("label.result").show(false)
+------------------------------------------------------------------------------------+
|result                                                                              |
+------------------------------------------------------------------------------------+
|[B-PER, I-PER, O, O, O, B-LOC, O, O, O, B-LOC, O, O, O, O, B-PER, O, O, O, O, B-LOC]|
+------------------------------------------------------------------------------------+
See also

AlbertForTokenClassification for token-level classification

Annotators Main Page for a list of transformer based classifiers

Ordering
  1. Grouped
  2. Alphabetic
  3. By Inheritance
Inherited
  1. AlbertForTokenClassification
  2. HasEngine
  3. HasCaseSensitiveProperties
  4. WriteSentencePieceModel
  5. WriteOnnxModel
  6. WriteTensorflowModel
  7. HasBatchedAnnotate
  8. AnnotatorModel
  9. CanBeLazy
  10. RawAnnotator
  11. HasOutputAnnotationCol
  12. HasInputAnnotationCols
  13. HasOutputAnnotatorType
  14. ParamsAndFeaturesWritable
  15. HasFeatures
  16. DefaultParamsWritable
  17. MLWritable
  18. Model
  19. Transformer
  20. PipelineStage
  21. Logging
  22. Params
  23. Serializable
  24. Serializable
  25. Identifiable
  26. AnyRef
  27. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new AlbertForTokenClassification()

    Annotator reference id.

    Annotator reference id. Used to identify elements in metadata or to refer to this annotator type

  2. new AlbertForTokenClassification(uid: String)

    uid

    required uid for storing annotator to disk

Type Members

  1. type AnnotationContent = Seq[Row]

    internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI

    internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI

    Attributes
    protected
    Definition Classes
    AnnotatorModel
  2. type AnnotatorType = String
    Definition Classes
    HasOutputAnnotatorType

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def $[T](param: Param[T]): T
    Attributes
    protected
    Definition Classes
    Params
  4. def $$[T](feature: StructFeature[T]): T
    Attributes
    protected
    Definition Classes
    HasFeatures
  5. def $$[K, V](feature: MapFeature[K, V]): Map[K, V]
    Attributes
    protected
    Definition Classes
    HasFeatures
  6. def $$[T](feature: SetFeature[T]): Set[T]
    Attributes
    protected
    Definition Classes
    HasFeatures
  7. def $$[T](feature: ArrayFeature[T]): Array[T]
    Attributes
    protected
    Definition Classes
    HasFeatures
  8. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  9. def _transform(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): DataFrame
    Attributes
    protected
    Definition Classes
    AnnotatorModel
  10. def afterAnnotate(dataset: DataFrame): DataFrame
    Attributes
    protected
    Definition Classes
    AnnotatorModel
  11. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  12. def batchAnnotate(batchedAnnotations: Seq[Array[Annotation]]): Seq[Seq[Annotation]]

    takes a document and annotations and produces new annotations of this annotator's annotation type

    takes a document and annotations and produces new annotations of this annotator's annotation type

    batchedAnnotations

    Annotations that correspond to inputAnnotationCols generated by previous annotators if any

    returns

    any number of annotations processed for every input annotation. Not necessary one to one relationship

    Definition Classes
    AlbertForTokenClassificationHasBatchedAnnotate
  13. def batchProcess(rows: Iterator[_]): Iterator[Row]
    Definition Classes
    HasBatchedAnnotate
  14. val batchSize: IntParam

    Size of every batch (Default depends on model).

    Size of every batch (Default depends on model).

    Definition Classes
    HasBatchedAnnotate
  15. def beforeAnnotate(dataset: Dataset[_]): Dataset[_]
    Attributes
    protected
    Definition Classes
    AnnotatorModel
  16. val caseSensitive: BooleanParam

    Whether to ignore case in index lookups (Default depends on model)

    Whether to ignore case in index lookups (Default depends on model)

    Definition Classes
    HasCaseSensitiveProperties
  17. final def checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
    Attributes
    protected
    Definition Classes
    HasInputAnnotationCols
  18. final def clear(param: Param[_]): AlbertForTokenClassification.this.type
    Definition Classes
    Params
  19. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  20. val configProtoBytes: IntArrayParam

    ConfigProto from tensorflow, serialized into byte array.

    ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()

  21. def copy(extra: ParamMap): AlbertForTokenClassification

    requirement for annotators copies

    requirement for annotators copies

    Definition Classes
    RawAnnotator → Model → Transformer → PipelineStage → Params
  22. def copyValues[T <: Params](to: T, extra: ParamMap): T
    Attributes
    protected
    Definition Classes
    Params
  23. final def defaultCopy[T <: Params](extra: ParamMap): T
    Attributes
    protected
    Definition Classes
    Params
  24. val engine: Param[String]

    This param is set internally once via loadSavedModel.

    This param is set internally once via loadSavedModel. That's why there is no setter

    Definition Classes
    HasEngine
  25. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  26. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  27. def explainParam(param: Param[_]): String
    Definition Classes
    Params
  28. def explainParams(): String
    Definition Classes
    Params
  29. def extraValidate(structType: StructType): Boolean
    Attributes
    protected
    Definition Classes
    RawAnnotator
  30. def extraValidateMsg: String

    Override for additional custom schema checks

    Override for additional custom schema checks

    Attributes
    protected
    Definition Classes
    RawAnnotator
  31. final def extractParamMap(): ParamMap
    Definition Classes
    Params
  32. final def extractParamMap(extra: ParamMap): ParamMap
    Definition Classes
    Params
  33. val features: ArrayBuffer[Feature[_, _, _]]
    Definition Classes
    HasFeatures
  34. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  35. def get[T](feature: StructFeature[T]): Option[T]
    Attributes
    protected
    Definition Classes
    HasFeatures
  36. def get[K, V](feature: MapFeature[K, V]): Option[Map[K, V]]
    Attributes
    protected
    Definition Classes
    HasFeatures
  37. def get[T](feature: SetFeature[T]): Option[Set[T]]
    Attributes
    protected
    Definition Classes
    HasFeatures
  38. def get[T](feature: ArrayFeature[T]): Option[Array[T]]
    Attributes
    protected
    Definition Classes
    HasFeatures
  39. final def get[T](param: Param[T]): Option[T]
    Definition Classes
    Params
  40. def getBatchSize: Int

    Size of every batch.

    Size of every batch.

    Definition Classes
    HasBatchedAnnotate
  41. def getCaseSensitive: Boolean

    Definition Classes
    HasCaseSensitiveProperties
  42. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  43. def getClasses: Array[String]

    Returns labels used to train this model

  44. def getConfigProtoBytes: Option[Array[Byte]]

  45. final def getDefault[T](param: Param[T]): Option[T]
    Definition Classes
    Params
  46. def getEngine: String

    Definition Classes
    HasEngine
  47. def getInputCols: Array[String]

    returns

    input annotations columns currently used

    Definition Classes
    HasInputAnnotationCols
  48. def getLazyAnnotator: Boolean
    Definition Classes
    CanBeLazy
  49. def getMaxSentenceLength: Int

  50. def getModelIfNotSet: AlbertClassification

  51. final def getOrDefault[T](param: Param[T]): T
    Definition Classes
    Params
  52. final def getOutputCol: String

    Gets annotation column name going to generate

    Gets annotation column name going to generate

    Definition Classes
    HasOutputAnnotationCol
  53. def getParam(paramName: String): Param[Any]
    Definition Classes
    Params
  54. def getSignatures: Option[Map[String, String]]

  55. final def hasDefault[T](param: Param[T]): Boolean
    Definition Classes
    Params
  56. def hasParam(paramName: String): Boolean
    Definition Classes
    Params
  57. def hasParent: Boolean
    Definition Classes
    Model
  58. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  59. def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
    Attributes
    protected
    Definition Classes
    Logging
  60. def initializeLogIfNecessary(isInterpreter: Boolean): Unit
    Attributes
    protected
    Definition Classes
    Logging
  61. val inputAnnotatorTypes: Array[String]

    Input Annotator Types: DOCUMENT, TOKEN

    Input Annotator Types: DOCUMENT, TOKEN

    Definition Classes
    AlbertForTokenClassificationHasInputAnnotationCols
  62. final val inputCols: StringArrayParam

    columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified

    columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified

    Attributes
    protected
    Definition Classes
    HasInputAnnotationCols
  63. final def isDefined(param: Param[_]): Boolean
    Definition Classes
    Params
  64. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  65. final def isSet(param: Param[_]): Boolean
    Definition Classes
    Params
  66. def isTraceEnabled(): Boolean
    Attributes
    protected
    Definition Classes
    Logging
  67. val labels: MapFeature[String, Int]

    Labels used to decode predicted IDs back to string tags

  68. val lazyAnnotator: BooleanParam
    Definition Classes
    CanBeLazy
  69. def log: Logger
    Attributes
    protected
    Definition Classes
    Logging
  70. def logDebug(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  71. def logDebug(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  72. def logError(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  73. def logError(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  74. def logInfo(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  75. def logInfo(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  76. def logName: String
    Attributes
    protected
    Definition Classes
    Logging
  77. def logTrace(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  78. def logTrace(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  79. def logWarning(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  80. def logWarning(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  81. val maxSentenceLength: IntParam

    Max sentence length to process (Default: 128)

  82. def msgHelper(schema: StructType): String
    Attributes
    protected
    Definition Classes
    HasInputAnnotationCols
  83. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  84. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  85. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  86. def onWrite(path: String, spark: SparkSession): Unit
  87. val optionalInputAnnotatorTypes: Array[String]
    Definition Classes
    HasInputAnnotationCols
  88. val outputAnnotatorType: AnnotatorType

    Output Annotator Types: WORD_EMBEDDINGS

    Output Annotator Types: WORD_EMBEDDINGS

    Definition Classes
    AlbertForTokenClassificationHasOutputAnnotatorType
  89. final val outputCol: Param[String]
    Attributes
    protected
    Definition Classes
    HasOutputAnnotationCol
  90. lazy val params: Array[Param[_]]
    Definition Classes
    Params
  91. var parent: Estimator[AlbertForTokenClassification]
    Definition Classes
    Model
  92. def save(path: String): Unit
    Definition Classes
    MLWritable
    Annotations
    @Since( "1.6.0" ) @throws( ... )
  93. def set[T](feature: StructFeature[T], value: T): AlbertForTokenClassification.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  94. def set[K, V](feature: MapFeature[K, V], value: Map[K, V]): AlbertForTokenClassification.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  95. def set[T](feature: SetFeature[T], value: Set[T]): AlbertForTokenClassification.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  96. def set[T](feature: ArrayFeature[T], value: Array[T]): AlbertForTokenClassification.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  97. final def set(paramPair: ParamPair[_]): AlbertForTokenClassification.this.type
    Attributes
    protected
    Definition Classes
    Params
  98. final def set(param: String, value: Any): AlbertForTokenClassification.this.type
    Attributes
    protected
    Definition Classes
    Params
  99. final def set[T](param: Param[T], value: T): AlbertForTokenClassification.this.type
    Definition Classes
    Params
  100. def setBatchSize(size: Int): AlbertForTokenClassification.this.type

    Size of every batch.

    Size of every batch.

    Definition Classes
    HasBatchedAnnotate
  101. def setCaseSensitive(value: Boolean): AlbertForTokenClassification.this.type

    Whether to lowercase tokens or not

    Whether to lowercase tokens or not

    Definition Classes
    AlbertForTokenClassificationHasCaseSensitiveProperties
  102. def setConfigProtoBytes(bytes: Array[Int]): AlbertForTokenClassification.this.type

  103. def setDefault[T](feature: StructFeature[T], value: () ⇒ T): AlbertForTokenClassification.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  104. def setDefault[K, V](feature: MapFeature[K, V], value: () ⇒ Map[K, V]): AlbertForTokenClassification.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  105. def setDefault[T](feature: SetFeature[T], value: () ⇒ Set[T]): AlbertForTokenClassification.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  106. def setDefault[T](feature: ArrayFeature[T], value: () ⇒ Array[T]): AlbertForTokenClassification.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  107. final def setDefault(paramPairs: ParamPair[_]*): AlbertForTokenClassification.this.type
    Attributes
    protected
    Definition Classes
    Params
  108. final def setDefault[T](param: Param[T], value: T): AlbertForTokenClassification.this.type
    Attributes
    protected[org.apache.spark.ml]
    Definition Classes
    Params
  109. final def setInputCols(value: String*): AlbertForTokenClassification.this.type
    Definition Classes
    HasInputAnnotationCols
  110. def setInputCols(value: Array[String]): AlbertForTokenClassification.this.type

    Overrides required annotators column if different than default

    Overrides required annotators column if different than default

    Definition Classes
    HasInputAnnotationCols
  111. def setLabels(value: Map[String, Int]): AlbertForTokenClassification.this.type

  112. def setLazyAnnotator(value: Boolean): AlbertForTokenClassification.this.type
    Definition Classes
    CanBeLazy
  113. def setMaxSentenceLength(value: Int): AlbertForTokenClassification.this.type

  114. def setModelIfNotSet(spark: SparkSession, tensorflowWrapper: Option[TensorflowWrapper], onnxWrapper: Option[OnnxWrapper], spp: SentencePieceWrapper): AlbertForTokenClassification

  115. final def setOutputCol(value: String): AlbertForTokenClassification.this.type

    Overrides annotation column name when transforming

    Overrides annotation column name when transforming

    Definition Classes
    HasOutputAnnotationCol
  116. def setParent(parent: Estimator[AlbertForTokenClassification]): AlbertForTokenClassification
    Definition Classes
    Model
  117. def setSignatures(value: Map[String, String]): AlbertForTokenClassification.this.type

  118. val signatures: MapFeature[String, String]

    It contains TF model signatures for the laded saved model

  119. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  120. def toString(): String
    Definition Classes
    Identifiable → AnyRef → Any
  121. final def transform(dataset: Dataset[_]): DataFrame

    Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content

    Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content

    dataset

    Dataset[Row]

    Definition Classes
    AnnotatorModel → Transformer
  122. def transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame
    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" )
  123. def transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame
    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" ) @varargs()
  124. final def transformSchema(schema: StructType): StructType

    requirement for pipeline transformation validation.

    requirement for pipeline transformation validation. It is called on fit()

    Definition Classes
    RawAnnotator → PipelineStage
  125. def transformSchema(schema: StructType, logging: Boolean): StructType
    Attributes
    protected
    Definition Classes
    PipelineStage
    Annotations
    @DeveloperApi()
  126. val uid: String
    Definition Classes
    AlbertForTokenClassification → Identifiable
  127. def validate(schema: StructType): Boolean

    takes a Dataset and checks to see if all the required annotation types are present.

    takes a Dataset and checks to see if all the required annotation types are present.

    schema

    to be validated

    returns

    True if all the required types are present, else false

    Attributes
    protected
    Definition Classes
    RawAnnotator
  128. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  129. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  130. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  131. def wrapColumnMetadata(col: Column): Column
    Attributes
    protected
    Definition Classes
    RawAnnotator
  132. def write: MLWriter
    Definition Classes
    ParamsAndFeaturesWritable → DefaultParamsWritable → MLWritable
  133. def writeOnnxModel(path: String, spark: SparkSession, onnxWrapper: OnnxWrapper, suffix: String, fileName: String): Unit
    Definition Classes
    WriteOnnxModel
  134. def writeOnnxModels(path: String, spark: SparkSession, onnxWrappersWithNames: Seq[(OnnxWrapper, String)], suffix: String): Unit
    Definition Classes
    WriteOnnxModel
  135. def writeSentencePieceModel(path: String, spark: SparkSession, spp: SentencePieceWrapper, suffix: String, filename: String): Unit
    Definition Classes
    WriteSentencePieceModel
  136. def writeTensorflowHub(path: String, tfPath: String, spark: SparkSession, suffix: String = "_use"): Unit
    Definition Classes
    WriteTensorflowModel
  137. def writeTensorflowModel(path: String, spark: SparkSession, tensorflow: TensorflowWrapper, suffix: String, filename: String, configProtoBytes: Option[Array[Byte]] = None): Unit
    Definition Classes
    WriteTensorflowModel
  138. def writeTensorflowModelV2(path: String, spark: SparkSession, tensorflow: TensorflowWrapper, suffix: String, filename: String, configProtoBytes: Option[Array[Byte]] = None, savedSignatures: Option[Map[String, String]] = None): Unit
    Definition Classes
    WriteTensorflowModel

Inherited from HasEngine

Inherited from WriteSentencePieceModel

Inherited from WriteOnnxModel

Inherited from WriteTensorflowModel

Inherited from CanBeLazy

Inherited from HasOutputAnnotationCol

Inherited from HasInputAnnotationCols

Inherited from HasOutputAnnotatorType

Inherited from ParamsAndFeaturesWritable

Inherited from HasFeatures

Inherited from DefaultParamsWritable

Inherited from MLWritable

Inherited from Model[AlbertForTokenClassification]

Inherited from Transformer

Inherited from PipelineStage

Inherited from Logging

Inherited from Params

Inherited from Serializable

Inherited from Serializable

Inherited from Identifiable

Inherited from AnyRef

Inherited from Any

Parameters

A list of (hyper-)parameter keys this annotator can take. Users can set and get the parameter values through setters and getters, respectively.

Annotator types

Required input and expected output annotator types

Members

Parameter setters

Parameter getters