class SentimentDLApproach extends AnnotatorApproach[SentimentDLModel] with ParamsAndFeaturesWritable with ClassifierEncoder
Trains a SentimentDL, an annotator for multi-class sentiment analysis.
In natural language processing, sentiment analysis is the task of classifying the affective state or subjective view of a text. A common example is if either a product review or tweet can be interpreted positively or negatively.
For the instantiated/pretrained models, see SentimentDLModel.
Notes:
- This annotator accepts a label column of a single item in either type of String, Int,
    Float, or Double. So positive sentiment can be expressed as either "positive"or0, negative sentiment as"negative"or1.
- UniversalSentenceEncoder,
    BertSentenceEmbeddings, or
    SentenceEmbeddings can be used for
    the inputCol.
Setting a test dataset to monitor model metrics can be done with .setTestDataset. The method
expects a path to a parquet file containing a dataframe that has the same required columns as
the training dataframe. The pre-processing steps for the training dataframe should also be
applied to the test dataframe. The following example will show how to create the test dataset:
val documentAssembler = new DocumentAssembler() .setInputCol("text") .setOutputCol("document") val embeddings = UniversalSentenceEncoder.pretrained() .setInputCols("document") .setOutputCol("sentence_embeddings") val preProcessingPipeline = new Pipeline().setStages(Array(documentAssembler, embeddings)) val Array(train, test) = data.randomSplit(Array(0.8, 0.2)) preProcessingPipeline .fit(test) .transform(test) .write .mode("overwrite") .parquet("test_data") val classifier = new SentimentDLApproach() .setInputCols("sentence_embeddings") .setOutputCol("sentiment") .setLabelColumn("label") .setTestDataset("test_data")
For extended examples of usage, see the Examples and the SentimentDLTestSpec.
Example
In this example, sentiment.csv is in the form
text,label This movie is the best movie I have watched ever! In my opinion this movie can win an award.,0 This was a terrible movie! The acting was bad really bad!,1
The model can then be trained with
import com.johnsnowlabs.nlp.base.DocumentAssembler import com.johnsnowlabs.nlp.annotator.UniversalSentenceEncoder import com.johnsnowlabs.nlp.annotators.classifier.dl.{SentimentDLApproach, SentimentDLModel} import org.apache.spark.ml.Pipeline val smallCorpus = spark.read.option("header", "true").csv("src/test/resources/classifier/sentiment.csv") val documentAssembler = new DocumentAssembler() .setInputCol("text") .setOutputCol("document") val useEmbeddings = UniversalSentenceEncoder.pretrained() .setInputCols("document") .setOutputCol("sentence_embeddings") val docClassifier = new SentimentDLApproach() .setInputCols("sentence_embeddings") .setOutputCol("sentiment") .setLabelColumn("label") .setBatchSize(32) .setMaxEpochs(1) .setLr(5e-3f) .setDropout(0.5f) val pipeline = new Pipeline() .setStages( Array( documentAssembler, useEmbeddings, docClassifier ) ) val pipelineModel = pipeline.fit(smallCorpus)
- See also
- ClassifierDLApproach for general single-class classification - MultiClassifierDLApproach for general multi-class classification 
- Grouped
- Alphabetic
- By Inheritance
- SentimentDLApproach
- ClassifierEncoder
- EvaluationDLParams
- ParamsAndFeaturesWritable
- HasFeatures
- AnnotatorApproach
- CanBeLazy
- DefaultParamsWritable
- MLWritable
- HasOutputAnnotatorType
- HasOutputAnnotationCol
- HasInputAnnotationCols
- Estimator
- PipelineStage
- Logging
- Params
- Serializable
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
Type Members
- 
      
      
      
        
      
    
      
        
        type
      
      
        AnnotatorType = String
      
      
      - Definition Classes
- HasOutputAnnotatorType
 
Value Members
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        !=(arg0: Any): Boolean
      
      
      - Definition Classes
- AnyRef → Any
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        ##(): Int
      
      
      - Definition Classes
- AnyRef → Any
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        $[T](param: Param[T]): T
      
      
      - Attributes
- protected
- Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        $$[T](feature: StructFeature[T]): T
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        $$[K, V](feature: MapFeature[K, V]): Map[K, V]
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        $$[T](feature: SetFeature[T]): Set[T]
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        $$[T](feature: ArrayFeature[T]): Array[T]
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        ==(arg0: Any): Boolean
      
      
      - Definition Classes
- AnyRef → Any
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        _fit(dataset: Dataset[_], recursiveStages: Option[PipelineModel]): SentimentDLModel
      
      
      - Attributes
- protected
- Definition Classes
- AnnotatorApproach
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        asInstanceOf[T0]: T0
      
      
      - Definition Classes
- Any
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        batchSize: IntParam
      
      
      Batch size (Default: 64)Batch size (Default: 64)- Definition Classes
- ClassifierEncoder
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        beforeTraining(spark: SparkSession): Unit
      
      
      - Definition Classes
- SentimentDLApproach → AnnotatorApproach
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        buildDatasetWithLabels(dataset: Dataset[_], inputCols: String): (DataFrame, Array[String])
      
      
      - Attributes
- protected
- Definition Classes
- ClassifierEncoder
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
      
      
      - Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        clear(param: Param[_]): SentimentDLApproach.this.type
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        clone(): AnyRef
      
      
      - Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        configProtoBytes: IntArrayParam
      
      
      ConfigProto from tensorflow, serialized into byte array. ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString() - Definition Classes
- ClassifierEncoder
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        copy(extra: ParamMap): Estimator[SentimentDLModel]
      
      
      - Definition Classes
- AnnotatorApproach → Estimator → PipelineStage → Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        copyValues[T <: Params](to: T, extra: ParamMap): T
      
      
      - Attributes
- protected
- Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        defaultCopy[T <: Params](extra: ParamMap): T
      
      
      - Attributes
- protected
- Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        description: String
      
      
      - Definition Classes
- SentimentDLApproach → AnnotatorApproach
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        dropout: FloatParam
      
      
      Dropout coefficient (Default: 0.5f)
- 
      
      
      
        
      
    
      
        
        val
      
      
        enableOutputLogs: BooleanParam
      
      
      Whether to output to annotators log folder (Default: false)Whether to output to annotators log folder (Default: false)- Definition Classes
- EvaluationDLParams
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        eq(arg0: AnyRef): Boolean
      
      
      - Definition Classes
- AnyRef
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        equals(arg0: Any): Boolean
      
      
      - Definition Classes
- AnyRef → Any
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        evaluationLogExtended: BooleanParam
      
      
      Whether logs for validation to be extended (Default: false): it displays time and evaluation of each labelWhether logs for validation to be extended (Default: false): it displays time and evaluation of each label- Definition Classes
- EvaluationDLParams
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        explainParam(param: Param[_]): String
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        explainParams(): String
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        extractInputs(encoder: ClassifierDatasetEncoder, dataframe: DataFrame): (Array[Array[Float]], Array[String])
      
      
      - Attributes
- protected
- Definition Classes
- ClassifierEncoder
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        extractParamMap(): ParamMap
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        extractParamMap(extra: ParamMap): ParamMap
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        features: ArrayBuffer[Feature[_, _, _]]
      
      
      - Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        finalize(): Unit
      
      
      - Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        fit(dataset: Dataset[_]): SentimentDLModel
      
      
      - Definition Classes
- AnnotatorApproach → Estimator
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        fit(dataset: Dataset[_], paramMaps: Seq[ParamMap]): Seq[SentimentDLModel]
      
      
      - Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" )
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        fit(dataset: Dataset[_], paramMap: ParamMap): SentimentDLModel
      
      
      - Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" )
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): SentimentDLModel
      
      
      - Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" ) @varargs()
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        get[T](feature: StructFeature[T]): Option[T]
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        get[K, V](feature: MapFeature[K, V]): Option[Map[K, V]]
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        get[T](feature: SetFeature[T]): Option[Set[T]]
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        get[T](feature: ArrayFeature[T]): Option[Array[T]]
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        get[T](param: Param[T]): Option[T]
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getBatchSize: Int
      
      
      Batch size (Default: 64)Batch size (Default: 64)- Definition Classes
- ClassifierEncoder
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        getClass(): Class[_]
      
      
      - Definition Classes
- AnyRef → Any
- Annotations
- @native()
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getConfigProtoBytes: Option[Array[Byte]]
      
      
      Tensorflow config Protobytes passed to the TF session Tensorflow config Protobytes passed to the TF session - Definition Classes
- ClassifierEncoder
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        getDefault[T](param: Param[T]): Option[T]
      
      
      - Definition Classes
- Params
 
-  def getDropout: Float
- 
      
      
      
        
      
    
      
        
        def
      
      
        getEnableOutputLogs: Boolean
      
      
      Whether to output to annotators log folder (Default: false)Whether to output to annotators log folder (Default: false)- Definition Classes
- EvaluationDLParams
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getInputCols: Array[String]
      
      
      - returns
- input annotations columns currently used 
 - Definition Classes
- HasInputAnnotationCols
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getLabelColumn: String
      
      
      Column with label per each document Column with label per each document - Definition Classes
- ClassifierEncoder
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getLazyAnnotator: Boolean
      
      
      - Definition Classes
- CanBeLazy
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getLr: Float
      
      
      Learning Rate (Default: 5e-3f)Learning Rate (Default: 5e-3f)- Definition Classes
- ClassifierEncoder
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getMaxEpochs: Int
      
      
      Maximum number of epochs to train (Default: 10)Maximum number of epochs to train (Default: 10)- Definition Classes
- ClassifierEncoder
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        getOrDefault[T](param: Param[T]): T
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        getOutputCol: String
      
      
      Gets annotation column name going to generate Gets annotation column name going to generate - Definition Classes
- HasOutputAnnotationCol
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getOutputLogsPath: String
      
      
      Folder path to save training logs (Default: "")Folder path to save training logs (Default: "")- Definition Classes
- EvaluationDLParams
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getParam(paramName: String): Param[Any]
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getRandomSeed: Int
      
      
      Random seed Random seed - Definition Classes
- ClassifierEncoder
 
-  def getThreshold: Float
-  def getThresholdLabel: String
- 
      
      
      
        
      
    
      
        
        def
      
      
        getValidationSplit: Float
      
      
      Choose the proportion of training dataset to be validated against the model on each Epoch (Default: 0.0f).Choose the proportion of training dataset to be validated against the model on each Epoch (Default: 0.0f). The value should be between 0.0 and 1.0 and by default it is 0.0 and off.- Definition Classes
- EvaluationDLParams
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        hasDefault[T](param: Param[T]): Boolean
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        hasParam(paramName: String): Boolean
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        hashCode(): Int
      
      
      - Definition Classes
- AnyRef → Any
- Annotations
- @native()
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        initializeLogIfNecessary(isInterpreter: Boolean): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        inputAnnotatorTypes: Array[AnnotatorType]
      
      
      Input Annotator Types: SENTENCE_EMBEDDINGS Input Annotator Types: SENTENCE_EMBEDDINGS - Definition Classes
- SentimentDLApproach → HasInputAnnotationCols
 
- 
      
      
      
        
      
    
      
        final 
        val
      
      
        inputCols: StringArrayParam
      
      
      columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified - Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        isDefined(param: Param[_]): Boolean
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        isInstanceOf[T0]: Boolean
      
      
      - Definition Classes
- Any
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        isSet(param: Param[_]): Boolean
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        isTraceEnabled(): Boolean
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        labelColumn: Param[String]
      
      
      Column with label per each document Column with label per each document - Definition Classes
- ClassifierEncoder
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        lazyAnnotator: BooleanParam
      
      
      - Definition Classes
- CanBeLazy
 
-  def loadSavedModel(): TensorflowWrapper
- 
      
      
      
        
      
    
      
        
        def
      
      
        log: Logger
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logDebug(msg: ⇒ String, throwable: Throwable): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logDebug(msg: ⇒ String): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logError(msg: ⇒ String, throwable: Throwable): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logError(msg: ⇒ String): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logInfo(msg: ⇒ String, throwable: Throwable): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logInfo(msg: ⇒ String): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logName: String
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logTrace(msg: ⇒ String, throwable: Throwable): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logTrace(msg: ⇒ String): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logWarning(msg: ⇒ String, throwable: Throwable): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logWarning(msg: ⇒ String): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        lr: FloatParam
      
      
      Learning Rate (Default: 5e-3f)Learning Rate (Default: 5e-3f)- Definition Classes
- ClassifierEncoder
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        maxEpochs: IntParam
      
      
      Maximum number of epochs to train (Default: 10)Maximum number of epochs to train (Default: 10)- Definition Classes
- ClassifierEncoder
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        msgHelper(schema: StructType): String
      
      
      - Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        ne(arg0: AnyRef): Boolean
      
      
      - Definition Classes
- AnyRef
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        notify(): Unit
      
      
      - Definition Classes
- AnyRef
- Annotations
- @native()
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        notifyAll(): Unit
      
      
      - Definition Classes
- AnyRef
- Annotations
- @native()
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        onTrained(model: SentimentDLModel, spark: SparkSession): Unit
      
      
      - Definition Classes
- AnnotatorApproach
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        onWrite(path: String, spark: SparkSession): Unit
      
      
      - Attributes
- protected
- Definition Classes
- ParamsAndFeaturesWritable
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        optionalInputAnnotatorTypes: Array[String]
      
      
      - Definition Classes
- HasInputAnnotationCols
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        outputAnnotatorType: String
      
      
      Output Annotator Types: CATEGORY Output Annotator Types: CATEGORY - Definition Classes
- SentimentDLApproach → HasOutputAnnotatorType
 
- 
      
      
      
        
      
    
      
        final 
        val
      
      
        outputCol: Param[String]
      
      
      - Attributes
- protected
- Definition Classes
- HasOutputAnnotationCol
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        outputLogsPath: Param[String]
      
      
      Folder path to save training logs (Default: "")Folder path to save training logs (Default: "")- Definition Classes
- EvaluationDLParams
 
- 
      
      
      
        
      
    
      
        
        lazy val
      
      
        params: Array[Param[_]]
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        randomSeed: IntParam
      
      
      Random seed for shuffling the dataset Random seed for shuffling the dataset - Definition Classes
- ClassifierEncoder
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        save(path: String): Unit
      
      
      - Definition Classes
- MLWritable
- Annotations
- @Since( "1.6.0" ) @throws( ... )
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        set[T](feature: StructFeature[T], value: T): SentimentDLApproach.this.type
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        set[K, V](feature: MapFeature[K, V], value: Map[K, V]): SentimentDLApproach.this.type
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        set[T](feature: SetFeature[T], value: Set[T]): SentimentDLApproach.this.type
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        set[T](feature: ArrayFeature[T], value: Array[T]): SentimentDLApproach.this.type
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        set(paramPair: ParamPair[_]): SentimentDLApproach.this.type
      
      
      - Attributes
- protected
- Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        set(param: String, value: Any): SentimentDLApproach.this.type
      
      
      - Attributes
- protected
- Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        set[T](param: Param[T], value: T): SentimentDLApproach.this.type
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setBatchSize(batch: Int): SentimentDLApproach.this.type
      
      
      Batch size (Default: 64)Batch size (Default: 64)- Definition Classes
- ClassifierEncoder
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setConfigProtoBytes(bytes: Array[Int]): SentimentDLApproach.this.type
      
      
      Tensorflow config Protobytes passed to the TF session Tensorflow config Protobytes passed to the TF session - Definition Classes
- ClassifierEncoder
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setDefault[T](feature: StructFeature[T], value: () ⇒ T): SentimentDLApproach.this.type
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setDefault[K, V](feature: MapFeature[K, V], value: () ⇒ Map[K, V]): SentimentDLApproach.this.type
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setDefault[T](feature: SetFeature[T], value: () ⇒ Set[T]): SentimentDLApproach.this.type
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setDefault[T](feature: ArrayFeature[T], value: () ⇒ Array[T]): SentimentDLApproach.this.type
      
      
      - Attributes
- protected
- Definition Classes
- HasFeatures
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        setDefault(paramPairs: ParamPair[_]*): SentimentDLApproach.this.type
      
      
      - Attributes
- protected
- Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        setDefault[T](param: Param[T], value: T): SentimentDLApproach.this.type
      
      
      - Attributes
- protected[org.apache.spark.ml]
- Definition Classes
- Params
 
-  def setDropout(dropout: Float): SentimentDLApproach.this.type
- 
      
      
      
        
      
    
      
        
        def
      
      
        setEnableOutputLogs(enableOutputLogs: Boolean): SentimentDLApproach.this.type
      
      
      Whether to output to annotators log folder (Default: false)Whether to output to annotators log folder (Default: false)- Definition Classes
- EvaluationDLParams
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setEvaluationLogExtended(evaluationLogExtended: Boolean): SentimentDLApproach.this.type
      
      
      Whether logs for validation to be extended: it displays time and evaluation of each label. Whether logs for validation to be extended: it displays time and evaluation of each label. Default is false. - Definition Classes
- EvaluationDLParams
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        setInputCols(value: String*): SentimentDLApproach.this.type
      
      
      - Definition Classes
- HasInputAnnotationCols
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setInputCols(value: Array[String]): SentimentDLApproach.this.type
      
      
      Overrides required annotators column if different than default Overrides required annotators column if different than default - Definition Classes
- HasInputAnnotationCols
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setLabelColumn(column: String): SentimentDLApproach.this.type
      
      
      Column with label per each document Column with label per each document - Definition Classes
- ClassifierEncoder
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setLazyAnnotator(value: Boolean): SentimentDLApproach.this.type
      
      
      - Definition Classes
- CanBeLazy
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setLr(lr: Float): SentimentDLApproach.this.type
      
      
      Learning Rate (Default: 5e-3f)Learning Rate (Default: 5e-3f)- Definition Classes
- ClassifierEncoder
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setMaxEpochs(epochs: Int): SentimentDLApproach.this.type
      
      
      Maximum number of epochs to train (Default: 10)Maximum number of epochs to train (Default: 10)- Definition Classes
- ClassifierEncoder
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        setOutputCol(value: String): SentimentDLApproach.this.type
      
      
      Overrides annotation column name when transforming Overrides annotation column name when transforming - Definition Classes
- HasOutputAnnotationCol
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setOutputLogsPath(path: String): SentimentDLApproach.this.type
      
      
      Folder path to save training logs (Default: "")Folder path to save training logs (Default: "")- Definition Classes
- EvaluationDLParams
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setRandomSeed(seed: Int): SentimentDLApproach.this.type
      
      
      Random seed Random seed - Definition Classes
- ClassifierEncoder
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setTestDataset(er: ExternalResource): SentimentDLApproach.this.type
      
      
      ExternalResource to a parquet file of a test dataset. ExternalResource to a parquet file of a test dataset. If set, it is used to calculate statistics on it during training. When using an ExternalResource, only parquet files are accepted for this function. The parquet file must be a dataframe that has the same columns as the model that is being trained. For example, if the model needs as input DOCUMENT,TOKEN,WORD_EMBEDDINGS(Features) andNAMED_ENTITY(label) then these columns also need to be present while saving the dataframe. The pre-processing steps for the training dataframe should also be applied to the test dataframe.An example on how to create such a parquet file could be: // assuming preProcessingPipeline val Array(train, test) = data.randomSplit(Array(0.8, 0.2)) preProcessingPipeline .fit(test) .transform(test) .write .mode("overwrite") .parquet("test_data") annotator.setTestDataset("test_data") - Definition Classes
- EvaluationDLParams
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setTestDataset(path: String, readAs: Format = ReadAs.SPARK, options: Map[String, String] = Map("format" -> "parquet")): SentimentDLApproach.this.type
      
      
      Path to a parquet file of a test dataset. Path to a parquet file of a test dataset. If set, it is used to calculate statistics on it during training. The parquet file must be a dataframe that has the same columns as the model that is being trained. For example, if the model needs as input DOCUMENT,TOKEN,WORD_EMBEDDINGS(Features) andNAMED_ENTITY(label) then these columns also need to be present while saving the dataframe. The pre-processing steps for the training dataframe should also be applied to the test dataframe.An example on how to create such a parquet file could be: // assuming preProcessingPipeline val Array(train, test) = data.randomSplit(Array(0.8, 0.2)) preProcessingPipeline .fit(test) .transform(test) .write .mode("overwrite") .parquet("test_data") annotator.setTestDataset("test_data") - Definition Classes
- EvaluationDLParams
 
-  def setThreshold(threshold: Float): SentimentDLApproach.this.type
-  def setThresholdLabel(label: String): SentimentDLApproach.this.type
- 
      
      
      
        
      
    
      
        
        def
      
      
        setValidationSplit(validationSplit: Float): SentimentDLApproach.this.type
      
      
      Choose the proportion of training dataset to be validated against the model on each Epoch (Default: 0.0f).Choose the proportion of training dataset to be validated against the model on each Epoch (Default: 0.0f). The value should be between 0.0 and 1.0 and by default it is 0.0 and off.- Definition Classes
- EvaluationDLParams
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setVerbose(verbose: Level): SentimentDLApproach.this.type
      
      
      Level of verbosity during training (Default: Verbose.Silent.id)Level of verbosity during training (Default: Verbose.Silent.id)- Definition Classes
- EvaluationDLParams
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setVerbose(verbose: Int): SentimentDLApproach.this.type
      
      
      Level of verbosity during training (Default: Verbose.Silent.id)Level of verbosity during training (Default: Verbose.Silent.id)- Definition Classes
- EvaluationDLParams
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        synchronized[T0](arg0: ⇒ T0): T0
      
      
      - Definition Classes
- AnyRef
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        testDataset: ExternalResourceParam
      
      
      Path to a parquet file of a test dataset. Path to a parquet file of a test dataset. If set, it is used to calculate statistics on it during training. - Definition Classes
- EvaluationDLParams
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        threshold: FloatParam
      
      
      The minimum threshold for the final result otherwise it will be either neutral or the value set in thresholdLabel (Default: 0.6f)
- 
      
      
      
        
      
    
      
        
        val
      
      
        thresholdLabel: Param[String]
      
      
      In case the score is less than threshold, what should be the label (Default: "neutral")
- 
      
      
      
        
      
    
      
        
        def
      
      
        toString(): String
      
      
      - Definition Classes
- Identifiable → AnyRef → Any
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        train(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): SentimentDLModel
      
      
      - Definition Classes
- SentimentDLApproach → AnnotatorApproach
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        transformSchema(schema: StructType): StructType
      
      
      requirement for pipeline transformation validation. requirement for pipeline transformation validation. It is called on fit() - Definition Classes
- AnnotatorApproach → PipelineStage
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        transformSchema(schema: StructType, logging: Boolean): StructType
      
      
      - Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        uid: String
      
      
      - Definition Classes
- SentimentDLApproach → Identifiable
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        validate(schema: StructType): Boolean
      
      
      takes a Dataset and checks to see if all the required annotation types are present. takes a Dataset and checks to see if all the required annotation types are present. - schema
- to be validated 
- returns
- True if all the required types are present, else false 
 - Attributes
- protected
- Definition Classes
- AnnotatorApproach
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        validationSplit: FloatParam
      
      
      Choose the proportion of training dataset to be validated against the model on each Epoch (Default: 0.0f).Choose the proportion of training dataset to be validated against the model on each Epoch (Default: 0.0f). The value should be between 0.0 and 1.0 and by default it is 0.0 and off.- Definition Classes
- EvaluationDLParams
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        verbose: IntParam
      
      
      Level of verbosity during training (Default: Verbose.Silent.id)Level of verbosity during training (Default: Verbose.Silent.id)- Definition Classes
- EvaluationDLParams
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(): Unit
      
      
      - Definition Classes
- AnyRef
- Annotations
- @throws( ... )
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long, arg1: Int): Unit
      
      
      - Definition Classes
- AnyRef
- Annotations
- @throws( ... )
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long): Unit
      
      
      - Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        write: MLWriter
      
      
      - Definition Classes
- ParamsAndFeaturesWritable → DefaultParamsWritable → MLWritable
 
Inherited from ClassifierEncoder
Inherited from EvaluationDLParams
Inherited from ParamsAndFeaturesWritable
Inherited from HasFeatures
Inherited from AnnotatorApproach[SentimentDLModel]
Inherited from CanBeLazy
Inherited from DefaultParamsWritable
Inherited from MLWritable
Inherited from HasOutputAnnotatorType
Inherited from HasOutputAnnotationCol
Inherited from HasInputAnnotationCols
Inherited from Estimator[SentimentDLModel]
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Parameters
A list of (hyper-)parameter keys this annotator can take. Users can set and get the parameter values through setters and getters, respectively.
Annotator types
Required input and expected output annotator types