Contains classes concerning VisionEncoderDecoderForImageCaptioning.
Module Contents
Classes
-
class VisionEncoderDecoderForImageCaptioning(classname='com.johnsnowlabs.nlp.annotators.cv.VisionEncoderDecoderForImageCaptioning', java_model=None)[source]
VisionEncoderDecoder model that converts images into text captions. It allows for the use of
pretrained vision auto-encoding models, such as ViT, BEiT, or DeiT as the encoder, in
combination with pretrained language models, like RoBERTa, GPT2, or BERT as the decoder.
Pretrained models can be loaded with pretrained
of the companion object:
imageClassifier = VisionEncoderDecoderForImageCaptioning.pretrained() \
.setInputCols(["image_assembler"]) \
.setOutputCol("caption")
The default model is "image_captioning_vit_gpt2"
, if no name is provided.
For available pretrained models please see the
Models Hub.
Models from the HuggingFace 🤗 Transformers library are also compatible with Spark NLP 🚀. To
see which models are compatible and how to import them see
JohnSnowLabs/spark-nlp#5669 and to see more extended
examples, see
VisionEncoderDecoderTestSpec.
- Parameters:
- configProtoBytes
ConfigProto from tensorflow, serialized into byte array.
- doResize
Whether to resize the input to a certain size
- doNormalize
Whether to normalize the input with mean and standard deviation
- featureExtractorType
Name of model’s architecture for feature extraction
- imageMean
The sequence of means for each channel, to be used when normalizing images
- imageStd
The sequence of standard deviations for each channel, to be used when normalizing images
- resample
An optional resampling filter. This can be one of PIL.Image.NEAREST, PIL.Image.BILINEAR or
PIL.Image.BICUBIC. Only has an effect if do_resize is set to True.
- size
Resize the input to the given size. If a tuple is provided, it should be (width, height). If only an integer is
provided, then the input will be resized to (size, size). Only has an effect if do_resize is set to True.
- doRescale
Whether to rescale the image values by rescaleFactor
- rescaleFactor
Factor to scale the image values
- minOutputLength
Minimum length of the sequence to be generated
- maxOutputLength
Maximum length of output text
- doSample
Whether or not to use sampling; use greedy decoding otherwise
- temperature
The value used to module the next token probabilities
- topK
The number of highest probability vocabulary tokens to keep for top-k-filtering
- topP
If set to float < 1, only the most probable tokens with probabilities that add up to top_p
or higher are
kept for generation
- repetitionPenalty
The parameter for repetition penalty. 1.0 means no penalty.
See this paper for more details
- noRepeatNgramSize
If set to int > 0, all ngrams of that size can only occur once
- beamSize
The Number of beams for beam search
- nReturnSequences
The number of sequences to return from the beam search
Notes
This is a very computationally expensive module especially on larger
batch sizes. The use of an accelerator such as GPU is recommended.
Input Annotation types |
Output Annotation type |
IMAGE
|
DOCUMENT
|
Examples
>>> import sparknlp
>>> from sparknlp.base import *
>>> from sparknlp.annotator import *
>>> from pyspark.ml import Pipeline
>>> imageDF = spark.read \
... .format("image") \
... .option("dropInvalid", value = True) \
... .load("src/test/resources/image/")
>>> imageAssembler = ImageAssembler() \
... .setInputCol("image") \
... .setOutputCol("image_assembler")
>>> imageCaptioning = VisionEncoderDecoderForImageCaptioning \
... .pretrained() \
... .setBeamSize(2) \
... .setDoSample(False) \
... .setInputCols(["image_assembler"]) \
... .setOutputCol("caption")
>>> pipeline = Pipeline().setStages([imageAssembler, imageCaptioning])
>>> pipelineDF = pipeline.fit(imageDF).transform(imageDF)
>>> pipelineDF \
... .selectExpr("reverse(split(image.origin, '/'))[0] as image_name", "caption.result") \
... .show(truncate = False)
+-----------------+---------------------------------------------------------+
|image_name |result |
+-----------------+---------------------------------------------------------+
|palace.JPEG |[a large room filled with furniture and a large window] |
|egyptian_cat.jpeg|[a cat laying on a couch next to another cat] |
|hippopotamus.JPEG|[a brown bear in a body of water] |
|hen.JPEG |[a flock of chickens standing next to each other] |
|ostrich.JPEG |[a large bird standing on top of a lush green field] |
|junco.JPEG |[a small bird standing on a wet ground] |
|bluetick.jpg |[a small dog standing on a wooden floor] |
|chihuahua.jpg |[a small brown dog wearing a blue sweater] |
|tractor.JPEG |[a man is standing in a field with a tractor] |
|ox.JPEG |[a large brown cow standing on top of a lush green field]|
+-----------------+---------------------------------------------------------+
-
setConfigProtoBytes(b)[source]
Sets configProto from tensorflow, serialized into byte array.
- Parameters:
- bList[int]
ConfigProto from tensorflow, serialized into byte array
-
static loadSavedModel(folder, spark_session)[source]
Loads a locally saved model.
- Parameters:
- folderstr
Folder of the saved model
- spark_sessionpyspark.sql.SparkSession
The current SparkSession
- Returns:
- VisionEncoderDecoderForImageCaptioning
The restored model
-
static pretrained(name='image_captioning_vit_gpt2', lang='en', remote_loc=None)[source]
Downloads and loads a pretrained model.
- Parameters:
- namestr, optional
Name of the pretrained model, by default
“image_captioning_vit_gpt2”
- langstr, optional
Language of the pretrained model, by default “en”
- remote_locstr, optional
Optional remote address of the resource, by default None. Will use
Spark NLPs repositories otherwise.
- Returns:
- VisionEncoderDecoderForImageCaptioning
The restored model