sparknlp.annotator.er.entity_ruler
#
Contains classes for the EntityRuler.
Module Contents#
Classes#
Fits an Annotator to match exact strings or regex patterns provided in a |
|
Instantiated model of the EntityRulerApproach. |
- class EntityRulerApproach[source]#
Fits an Annotator to match exact strings or regex patterns provided in a file against a Document and assigns them an named entity. The definitions can contain any number of named entities.
There are multiple ways and formats to set the extraction resource. It is possible to set it either as a “JSON”, “JSONL” or “CSV” file. A path to the file needs to be provided to
setPatternsResource
. The file format needs to be set as the “format” field in theoption
parameter map and depending on the file type, additional parameters might need to be set.If the file is in a JSON format, then the rule definitions need to be given in a list with the fields “id”, “label” and “patterns”:
[ { "id": "person-regex", "label": "PERSON", "patterns": ["\w+\s\w+", "\w+-\w+"] }, { "id": "locations-words", "label": "LOCATION", "patterns": ["Winterfell"] } ]
The same fields also apply to a file in the JSONL format:
{"id": "names-with-j", "label": "PERSON", "patterns": ["Jon", "John", "John Snow"]} {"id": "names-with-s", "label": "PERSON", "patterns": ["Stark", "Snow"]} {"id": "names-with-e", "label": "PERSON", "patterns": ["Eddard", "Eddard Stark"]}
In order to use a CSV file, an additional parameter “delimiter” needs to be set. In this case, the delimiter might be set by using
.setPatternsResource("patterns.csv", ReadAs.TEXT, {"format": "csv", "delimiter": "|")})
:PERSON|Jon PERSON|John PERSON|John Snow LOCATION|Winterfell
Input Annotation types
Output Annotation type
DOCUMENT, TOKEN
CHUNK
- Parameters:
- patternsResource
Resource in JSON or CSV format to map entities to patterns
- useStorage
Whether to use RocksDB storage to serialize patterns
Examples
>>> import sparknlp >>> from sparknlp.base import * >>> from sparknlp.annotator import * >>> from sparknlp.common import * >>> from pyspark.ml import Pipeline
In this example, the entities file as the form of:
PERSON|Jon PERSON|John PERSON|John Snow LOCATION|Winterfell
where each line represents an entity and the associated string delimited by “|”.
>>> documentAssembler = DocumentAssembler() \ ... .setInputCol("text") \ ... .setOutputCol("document") >>> tokenizer = Tokenizer() \ ... .setInputCols(["document"]) \ ... .setOutputCol("token") >>> entityRuler = EntityRulerApproach() \ ... .setInputCols(["document", "token"]) \ ... .setOutputCol("entities") \ ... .setPatternsResource( ... "patterns.csv", ... ReadAs.TEXT, ... {"format": "csv", "delimiter": "\\|"} ... ) >>> pipeline = Pipeline().setStages([ ... documentAssembler, ... tokenizer, ... entityRuler ... ]) >>> data = spark.createDataFrame([["Jon Snow wants to be lord of Winterfell."]]).toDF("text") >>> result = pipeline.fit(data).transform(data) >>> result.selectExpr("explode(entities)").show(truncate=False) +--------------------------------------------------------------------+ |col | +--------------------------------------------------------------------+ |[chunk, 0, 2, Jon, [entity -> PERSON, sentence -> 0], []] | |[chunk, 29, 38, Winterfell, [entity -> LOCATION, sentence -> 0], []]| +--------------------------------------------------------------------+
- setPatternsResource(path, read_as=ReadAs.TEXT, options={'format': 'JSON'})[source]#
Sets Resource in JSON or CSV format to map entities to patterns.
- Parameters:
- pathstr
Path to the resource
- read_asstr, optional
How to interpret the resource, by default ReadAs.TEXT
- optionsdict, optional
Options for parsing the resource, by default {“format”: “JSON”}
- setUseStorage(value)[source]#
Sets whether to use RocksDB storage to serialize patterns.
- Parameters:
- valuebool
Whether to use RocksDB storage to serialize patterns.