sparknlp.annotator.seq2seq.auto_gguf_vision_model#

Contains classes for the AutoGGUFVisionModel.

Module Contents#

Classes#

AutoGGUFVisionModel

Multimodal annotator that uses the llama.cpp library to generate text completions with large

class AutoGGUFVisionModel(classname='com.johnsnowlabs.nlp.annotators.seq2seq.AutoGGUFVisionModel', java_model=None)[source]#

Multimodal annotator that uses the llama.cpp library to generate text completions with large language models. It supports ingesting images for captioning.

At the moment only CLIP based models are supported.

For settable parameters, and their explanations, see HasLlamaCppInferenceProperties, HasLlamaCppModelProperties and refer to the llama.cpp documentation of server.cpp for more information.

If the parameters are not set, the annotator will default to use the parameters provided by the model.

This annotator expects a column of annotator type AnnotationImage for the image and Annotation for the caption. Note that the image bytes in the image annotation need to be raw image bytes without preprocessing. We provide the helper function ImageAssembler.loadImagesAsBytes to load the image bytes from a directory.

Pretrained models can be loaded with pretrained of the companion object:

autoGGUFVisionModel = AutoGGUFVisionModel.pretrained() \
    .setInputCols(["image", "document"]) \
    .setOutputCol("completions")

The default model is "llava_v1.5_7b_Q4_0_gguf", if no name is provided.

For available pretrained models please see the Models Hub.

For extended examples of usage, see the AutoGGUFVisionModelTest and the example notebook.

Input Annotation types

Output Annotation type

IMAGE, DOCUMENT

DOCUMENT

Parameters:
nThreads

Set the number of threads to use during generation

nThreadsDraft

Set the number of threads to use during draft generation

nThreadsBatch

Set the number of threads to use during batch and prompt processing

nThreadsBatchDraft

Set the number of threads to use during batch and prompt processing

nCtx

Set the size of the prompt context

nBatch

Set the logical batch size for prompt processing (must be >=32 to use BLAS)

nUbatch

Set the physical batch size for prompt processing (must be >=32 to use BLAS)

nDraft

Set the number of tokens to draft for speculative decoding

nChunks

Set the maximal number of chunks to process

nSequences

Set the number of sequences to decode

pSplit

Set the speculative decoding split probability

nGpuLayers

Set the number of layers to store in VRAM (-1 - use default)

nGpuLayersDraft

Set the number of layers to store in VRAM for the draft model (-1 - use default)

gpuSplitMode

Set how to split the model across GPUs

mainGpu

Set the main GPU that is used for scratch and small tensors.

tensorSplit

Set how split tensors should be distributed across GPUs

grpAttnN

Set the group-attention factor

grpAttnW

Set the group-attention width

ropeFreqBase

Set the RoPE base frequency, used by NTK-aware scaling

ropeFreqScale

Set the RoPE frequency scaling factor, expands context by a factor of 1/N

yarnExtFactor

Set the YaRN extrapolation mix factor

yarnAttnFactor

Set the YaRN scale sqrt(t) or attention magnitude

yarnBetaFast

Set the YaRN low correction dim or beta

yarnBetaSlow

Set the YaRN high correction dim or alpha

yarnOrigCtx

Set the YaRN original context size of model

defragmentationThreshold

Set the KV cache defragmentation threshold

numaStrategy

Set optimization strategies that help on some NUMA systems (if available)

ropeScalingType

Set the RoPE frequency scaling method, defaults to linear unless specified by the model

poolingType

Set the pooling type for embeddings, use model default if unspecified

modelDraft

Set the draft model for speculative decoding

modelAlias

Set a model alias

lookupCacheStaticFilePath

Set path to static lookup cache to use for lookup decoding (not updated by generation)

lookupCacheDynamicFilePath

Set path to dynamic lookup cache to use for lookup decoding (updated by generation)

embedding

Whether to load model with embedding support

flashAttention

Whether to enable Flash Attention

inputPrefixBos

Whether to add prefix BOS to user inputs, preceding the –in-prefix string

useMmap

Whether to use memory-map model (faster load but may increase pageouts if not using mlock)

useMlock

Whether to force the system to keep model in RAM rather than swapping or compressing

noKvOffload

Whether to disable KV offload

systemPrompt

Set a system prompt to use

chatTemplate

The chat template to use

inputPrefix

Set the prompt to start generation with

inputSuffix

Set a suffix for infilling

cachePrompt

Whether to remember the prompt to avoid reprocessing it

nPredict

Set the number of tokens to predict

topK

Set top-k sampling

topP

Set top-p sampling

minP

Set min-p sampling

tfsZ

Set tail free sampling, parameter z

typicalP

Set locally typical sampling, parameter p

temperature

Set the temperature

dynatempRange

Set the dynamic temperature range

dynatempExponent

Set the dynamic temperature exponent

repeatLastN

Set the last n tokens to consider for penalties

repeatPenalty

Set the penalty of repeated sequences of tokens

frequencyPenalty

Set the repetition alpha frequency penalty

presencePenalty

Set the repetition alpha presence penalty

miroStat

Set MiroStat sampling strategies.

mirostatTau

Set the MiroStat target entropy, parameter tau

mirostatEta

Set the MiroStat learning rate, parameter eta

penalizeNl

Whether to penalize newline tokens

nKeep

Set the number of tokens to keep from the initial prompt

seed

Set the RNG seed

nProbs

Set the amount top tokens probabilities to output if greater than 0.

minKeep

Set the amount of tokens the samplers should return at least (0 = disabled)

grammar

Set BNF-like grammar to constrain generations

penaltyPrompt

Override which part of the prompt is penalized for repetition.

ignoreEos

Set whether to ignore end of stream token and continue generating (implies –logit-bias 2-inf)

disableTokenIds

Set the token ids to disable in the completion

stopStrings

Set strings upon seeing which token generation is stopped

samplers

Set which samplers to use for token generation in the given order

useChatTemplate

Set whether or not generate should apply a chat template

Notes

To use GPU inference with this annotator, make sure to use the Spark NLP GPU package and set the number of GPU layers with the setNGpuLayers method.

When using larger models, we recommend adjusting GPU usage with setNCtx and setNGpuLayers according to your hardware to avoid out-of-memory errors.

Examples >>> import sparknlp >>> from sparknlp.base import * >>> from sparknlp.annotator import * >>> from pyspark.ml import Pipeline >>> from pyspark.sql.functions import lit >>> documentAssembler = DocumentAssembler() … .setInputCol(“caption”) … .setOutputCol(“caption_document”) >>> imageAssembler = ImageAssembler() … .setInputCol(“image”) … .setOutputCol(“image_assembler”) >>> imagesPath = “src/test/resources/image/” >>> data = ImageAssembler … .loadImagesAsBytes(spark, imagesPath) … .withColumn(“caption”, lit(“Caption this image.”)) # Add a caption to each image. >>> nPredict = 40 >>> model = AutoGGUFVisionModel.pretrained() … .setInputCols([“caption_document”, “image_assembler”]) … .setOutputCol(“completions”) … .setBatchSize(4) … .setNGpuLayers(99) … .setNCtx(4096) … .setMinKeep(0) … .setMinP(0.05) … .setNPredict(nPredict) … .setNProbs(0) … .setPenalizeNl(False) … .setRepeatLastN(256) … .setRepeatPenalty(1.18) … .setStopStrings([“</s>”, “Llama:”, “User:”]) … .setTemperature(0.05) … .setTfsZ(1) … .setTypicalP(1) … .setTopK(40) … .setTopP(0.95) >>> pipeline = Pipeline().setStages([documentAssembler, imageAssembler, model]) >>> pipeline.fit(data).transform(data) … .selectExpr(“reverse(split(image.origin, ‘/’))[0] as image_name”, “completions.result”) … .show(truncate = False) +—————–+———————————————————————————————————————————————————————————————-+ |image_name |result | +-----------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ |palace.JPEG |[ The image depicts a large, ornate room with high ceilings and beautifully decorated walls. There are several chairs placed throughout the space, some of which have cushions] | |egyptian_cat.jpeg|[ The image features two cats lying on a pink surface, possibly a bed or sofa. One cat is positioned towards the left side of the scene and appears to be sleeping while holding] | |hippopotamus.JPEG|[ A large brown hippo is swimming in a body of water, possibly an aquarium. The hippo appears to be enjoying its time in the water and seems relaxed as it floats] | |hen.JPEG |[ The image features a large chicken standing next to several baby chickens. In total, there are five birds in the scene: one adult and four young ones. They appear to be gathered together] | |ostrich.JPEG |[ The image features a large, long-necked bird standing in the grass. It appears to be an ostrich or similar species with its head held high and looking around. In addition to] | |junco.JPEG |[ A small bird with a black head and white chest is standing on the snow. It appears to be looking at something, possibly food or another animal in its vicinity. The scene takes place out] | |bluetick.jpg |[ A dog with a red collar is sitting on the floor, looking at something. The dog appears to be staring into the distance or focusing its attention on an object in front of it.] | |chihuahua.jpg |[ A small brown dog wearing a sweater is sitting on the floor. The dog appears to be looking at something, possibly its owner or another animal in the room. It seems comfortable and relaxed]| |tractor.JPEG |[ A man is sitting in the driver’s seat of a green tractor, which has yellow wheels and tires. The tractor appears to be parked on top of an empty field with] | |ox.JPEG |[ A large bull with horns is standing in a grassy field.] | +—————–+———————————————————————————————————————————————————————————————-+——-

name = 'AutoGGUFVisionModel'[source]#
inputAnnotatorTypes[source]#
outputAnnotatorType = 'document'[source]#
static loadSavedModel(modelPath, mmprojPath, spark_session)[source]#

Loads a locally saved modelPath.

Parameters:
modelPathstr

Path to the modelPath file

mmprojPathstr

Path to the mmprojPath file

spark_sessionpyspark.sql.SparkSession

The current SparkSession

Returns:
AutoGGUFVisionModel

The restored modelPath

static pretrained(name='llava_v1.5_7b_Q4_0_gguf', lang='en', remote_loc=None)[source]#

Downloads and loads a pretrained model.

Parameters:
namestr, optional

Name of the pretrained model, by default “llava_v1.5_7b_Q4_0_gguf”

langstr, optional

Language of the pretrained model, by default “en”

remote_locstr, optional

Optional remote address of the resource, by default None. Will use Spark NLPs repositories otherwise.

Returns:
AutoGGUFVisionModel

The restored model