sparknlp.annotator.embeddings.mxbai_embeddings#

Contains classes for MxbaiEmbeddings.

Module Contents#

Classes#

MxbaiEmbeddings

Sentence embeddings using Mxbai Embeddings.

class MxbaiEmbeddings(classname='com.johnsnowlabs.nlp.embeddings.MxbaiEmbeddings', java_model=None)[source]#

Sentence embeddings using Mxbai Embeddings.

Pretrained models can be loaded with pretrained() of the companion object:

>>> embeddings = MxbaiEmbeddings.pretrained() \
...     .setInputCols(["document"]) \
...     .setOutputCol("Mxbai_embeddings")

The default model is "mxbai_large_v1", if no name is provided.

For available pretrained models please see the Models Hub.

Input Annotation types

Output Annotation type

DOCUMENT

SENTENCE_EMBEDDINGS

Parameters:
batchSize

Size of every batch , by default 8

dimension

Number of embedding dimensions, by default 768

caseSensitive

Whether to ignore case in tokens for embeddings matching, by default False

maxSentenceLength

Max sentence length to process, by default 512

configProtoBytes

ConfigProto from tensorflow, serialized into byte array.

Examples

>>> import sparknlp
>>> from sparknlp.base import *
>>> from sparknlp.annotator import *
>>> from pyspark.ml import Pipeline
>>> documentAssembler = DocumentAssembler() \
...     .setInputCol("text") \
...     .setOutputCol("document")
>>> embeddings = MxbaiEmbeddings.pretrained() \
...     .setInputCols(["document"]) \
...     .setOutputCol("embeddings")
>>> embeddingsFinisher = EmbeddingsFinisher() \
...     .setInputCols("embeddings") \
...     .setOutputCols("finished_embeddings") \
...     .setOutputAsVector(True)
>>> pipeline = Pipeline().setStages([
...     documentAssembler,
...     embeddings,
...     embeddingsFinisher
... ])
>>> data = spark.createDataFrame([["hello world", "hello moon"]]).toDF("text")
>>> result = pipeline.fit(data).transform(data)
>>> result.selectExpr("explode(finished_embeddings) as result").show(5, 80)
+--------------------------------------------------------------------------------+
|                                                                          result|
+--------------------------------------------------------------------------------+
|[0.50387806, 0.5861606, 0.35129607, -0.76046336, -0.32446072, -0.117674336, 0...|
|[0.6660665, 0.961762, 0.24854276, -0.1018044, -0.6569202, 0.027635604, 0.1915...|
+--------------------------------------------------------------------------------+
setPoolingStrategy(value)[source]#

Pooling strategy to use for sentence embeddings.

Available pooling strategies for sentence embeddings are:
  • “cls”: leading [CLS] token

  • “cls_avg”: leading [CLS] token + mean of all other tokens

  • “last”: embeddings of the last token in the sequence

  • “avg”: mean of all tokens

  • “max”: max of all embedding features of the entire token sequence

  • “int”: An integer number, which represents the index of the token to use as the

    embedding

Parameters:
valuestr

Pooling strategy to use for sentence embeddings

static loadSavedModel(folder, spark_session)[source]#

Loads a locally saved model.

Parameters:
folderstr

Folder of the saved model

spark_sessionpyspark.sql.SparkSession

The current SparkSession

Returns:
MxbaiEmbeddings

The restored model

static pretrained(name='mxbai_large_v1', lang='en', remote_loc=None)[source]#

Downloads and loads a pretrained model.

Parameters:
namestr, optional

Name of the pretrained model, by default “mxbai_large_v1”

langstr, optional

Language of the pretrained model, by default “en”

remote_locstr, optional

Optional remote address of the resource, by default None. Will use Spark NLPs repositories otherwise.

Returns:
MxbaiEmbeddings

The restored model