sparknlp.annotator.embeddings.bge_embeddings
#
Contains classes for BGEEmbeddings.
Module Contents#
Classes#
Sentence embeddings using BGE. |
- class BGEEmbeddings(classname='com.johnsnowlabs.nlp.embeddings.BGEEmbeddings', java_model=None)[source]#
Sentence embeddings using BGE.
BGE, or BAAI General Embeddings, a model that can map any text to a low-dimensional dense
vector which can be used for tasks like retrieval, classification, clustering, or semantic search.
Note that this annotator is only supported for Spark Versions 3.4 and up.
Pretrained models can be loaded with pretrained of the companion object:
>>> embeddings = BGEEmbeddings.pretrained() \ ... .setInputCols(["document"]) \ ... .setOutputCol("bge_embeddings")
The default model is
"bge_base"
, if no name is provided.For available pretrained models please see the Models Hub.
Input Annotation types
Output Annotation type
DOCUMENT
SENTENCE_EMBEDDINGS
- Parameters:
- batchSize
Size of every batch , by default 8
- dimension
Number of embedding dimensions, by default 768
- caseSensitive
Whether to ignore case in tokens for embeddings matching, by default False
- maxSentenceLength
Max sentence length to process, by default 512
- configProtoBytes
ConfigProto from tensorflow, serialized into byte array.
Examples
>>> import sparknlp >>> from sparknlp.base import * >>> from sparknlp.annotator import * >>> from pyspark.ml import Pipeline >>> documentAssembler = DocumentAssembler() \ ... .setInputCol("text") \ ... .setOutputCol("document") >>> embeddings = BGEEmbeddings.pretrained() \ ... .setInputCols(["document"]) \ ... .setOutputCol("bge_embeddings") >>> embeddingsFinisher = EmbeddingsFinisher() \ ... .setInputCols(["bge_embeddings"]) \ ... .setOutputCols("finished_embeddings") \ ... .setOutputAsVector(True) >>> pipeline = Pipeline().setStages([ ... documentAssembler, ... embeddings, ... embeddingsFinisher ... ]) >>> data = spark.createDataFrame([["query: how much protein should a female eat", ... "passage: As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day." + ... "But, as you can see from this chart, you'll need to increase that if you're expecting or training for a" + ... "marathon. Check out the chart below to see how much protein you should be eating each day.", ... ]]).toDF("text") >>> result = pipeline.fit(data).transform(data) >>> result.selectExpr("explode(finished_embeddings) as result").show(5, 80) +--------------------------------------------------------------------------------+ | result| +--------------------------------------------------------------------------------+ |[[8.0190285E-4, -0.005974853, -0.072875895, 0.007944068, 0.026059335, -0.0080...| |[[0.050514214, 0.010061974, -0.04340176, -0.020937217, 0.05170225, 0.01157857...| +--------------------------------------------------------------------------------+
- setConfigProtoBytes(b)[source]#
Sets configProto from tensorflow, serialized into byte array.
- Parameters:
- bList[int]
ConfigProto from tensorflow, serialized into byte array
- static loadSavedModel(folder, spark_session)[source]#
Loads a locally saved model.
- Parameters:
- folderstr
Folder of the saved model
- spark_sessionpyspark.sql.SparkSession
The current SparkSession
- Returns:
- BGEEmbeddings
The restored model
- static pretrained(name='bge_base', lang='en', remote_loc=None)[source]#
Downloads and loads a pretrained model.
- Parameters:
- namestr, optional
Name of the pretrained model, by default “bge_base”
- langstr, optional
Language of the pretrained model, by default “en”
- remote_locstr, optional
Optional remote address of the resource, by default None. Will use Spark NLPs repositories otherwise.
- Returns:
- BGEEmbeddings
The restored model