sparknlp.annotator.embeddings.xlnet_embeddings#

Contains classes for XlnetEmbeddings.

Module Contents#

Classes#

XlnetEmbeddings

XlnetEmbeddings (XLNet): Generalized Autoregressive Pretraining for

class XlnetEmbeddings(classname='com.johnsnowlabs.nlp.embeddings.XlnetEmbeddings', java_model=None)[source]#

XlnetEmbeddings (XLNet): Generalized Autoregressive Pretraining for Language Understanding

XLNet is a new unsupervised language representation learning method based on a novel generalized permutation language modeling objective. Additionally, XLNet employs Transformer-XL as the backbone model, exhibiting excellent performance for language tasks involving long context. Overall, XLNet achieves state-of-the-art (SOTA) results on various downstream language tasks including question answering, natural language inference, sentiment analysis, and document ranking.

These word embeddings represent the outputs generated by the XLNet models.

  • "xlnet_large_cased" (XLNet-Large): 24-layer, 1024-hidden, 16-heads

  • "xlnet_base_cased" (XLNet-Base): 12-layer, 768-hidden, 12-heads. This model is trained on full data (different from the one in the paper).

Pretrained models can be loaded with pretrained() of the companion object:

>>> embeddings = XlnetEmbeddings.pretrained() \
...     .setInputCols(["sentence", "token"]) \
...     .setOutputCol("embeddings")

The default model is "xlnet_base_cased", if no name is provided.

For extended examples of usage, see the Examples. To see which models are compatible and how to import them see Import Transformers into Spark NLP 🚀.

Input Annotation types

Output Annotation type

DOCUMENT, TOKEN

WORD_EMBEDDINGS

Parameters:
batchSize

Size of every batch, by default 8

dimension

Number of embedding dimensions, by default 768

caseSensitive

Whether to ignore case in tokens for embeddings matching, by default True

configProtoBytes

ConfigProto from tensorflow, serialized into byte array.

maxSentenceLength

Max sentence length to process, by default 128

Notes

This is a very computationally expensive module compared to word embedding modules that only perform embedding lookups. The use of an accelerator is recommended.

References

XLNet: Generalized Autoregressive Pretraining for Language Understanding

zihangdai/xlnet

Paper abstract:

With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, under comparable experiment settings, XLNet outperforms BERT on 20 tasks, often by a large margin, including question answering, natural language inference, sentiment analysis, and document ranking.

Examples

>>> import sparknlp
>>> from sparknlp.base import *
>>> from sparknlp.annotator import *
>>> from pyspark.ml import Pipeline
>>> documentAssembler = DocumentAssembler() \
...     .setInputCol("text") \
...     .setOutputCol("document")
>>> tokenizer = Tokenizer() \
...     .setInputCols(["document"]) \
...     .setOutputCol("token")
>>> embeddings = XlnetEmbeddings.pretrained() \
...     .setInputCols(["token", "document"]) \
...     .setOutputCol("embeddings")
>>> embeddingsFinisher = EmbeddingsFinisher() \
...     .setInputCols(["embeddings"]) \
...     .setOutputCols("finished_embeddings") \
...     .setOutputAsVector(True) \
...     .setCleanAnnotations(False)
>>> pipeline = Pipeline().setStages([
...     documentAssembler,
...     tokenizer,
...     embeddings,
...     embeddingsFinisher
... ])
>>> data = spark.createDataFrame([["This is a sentence."]]).toDF("text")
>>> result = pipeline.fit(data).transform(data)
>>> result.selectExpr("explode(finished_embeddings) as result").show(5, 80)
+--------------------------------------------------------------------------------+
|                                                                          result|
+--------------------------------------------------------------------------------+
|[-0.6287205219268799,-0.4865287244319916,-0.186111718416214,0.234187275171279...|
|[-1.1967450380325317,0.2746637463569641,0.9481253027915955,0.3431355059146881...|
|[-1.0777631998062134,-2.092679977416992,-1.5331977605819702,-1.11190271377563...|
|[-0.8349916934967041,-0.45627787709236145,-0.7890847325325012,-1.028069257736...|
|[-0.134845569729805,-0.11672890186309814,0.4945235550403595,-0.66587203741073...|
+--------------------------------------------------------------------------------+
setConfigProtoBytes(b)[source]#

Sets configProto from tensorflow, serialized into byte array.

Parameters:
bList[int]

ConfigProto from tensorflow, serialized into byte array

static loadSavedModel(folder, spark_session)[source]#

Loads a locally saved model.

Parameters:
folderstr

Folder of the saved model

spark_sessionpyspark.sql.SparkSession

The current SparkSession

Returns:
XlnetEmbeddings

The restored model

static pretrained(name='xlnet_base_cased', lang='en', remote_loc=None)[source]#

Downloads and loads a pretrained model.

Parameters:
namestr, optional

Name of the pretrained model, by default “xlnet_base_cased”

langstr, optional

Language of the pretrained model, by default “en”

remote_locstr, optional

Optional remote address of the resource, by default None. Will use Spark NLPs repositories otherwise.

Returns:
XlnetEmbeddings

The restored model