sparknlp.annotator.seq2seq.auto_gguf_model
#
Contains classes for the AutoGGUFModel.
Module Contents#
Classes#
Annotator that uses the llama.cpp library to generate text completions with large language |
- class AutoGGUFModel(classname='com.johnsnowlabs.nlp.annotators.seq2seq.AutoGGUFModel', java_model=None)[source]#
Annotator that uses the llama.cpp library to generate text completions with large language models.
For settable parameters, and their explanations, see the parameters of this class and refer to the llama.cpp documentation of server.cpp for more information.
If the parameters are not set, the annotator will default to use the parameters provided by the model.
Pretrained models can be loaded with
pretrained()
of the companion object:>>> auto_gguf_model = AutoGGUFModel.pretrained() \ ... .setInputCols(["document"]) \ ... .setOutputCol("completions")
The default model is
"phi3.5_mini_4k_instruct_q4_gguf"
, if no name is provided.For extended examples of usage, see the AutoGGUFModelTest and the example notebook.
For available pretrained models please see the Models Hub.
Input Annotation types
Output Annotation type
DOCUMENT
DOCUMENT
- Parameters:
- nThreads
Set the number of threads to use during generation
- nThreadsDraft
Set the number of threads to use during draft generation
- nThreadsBatch
Set the number of threads to use during batch and prompt processing
- nThreadsBatchDraft
Set the number of threads to use during batch and prompt processing
- nCtx
Set the size of the prompt context
- nBatch
Set the logical batch size for prompt processing (must be >=32 to use BLAS)
- nUbatch
Set the physical batch size for prompt processing (must be >=32 to use BLAS)
- nDraft
Set the number of tokens to draft for speculative decoding
- nChunks
Set the maximal number of chunks to process
- nSequences
Set the number of sequences to decode
- pSplit
Set the speculative decoding split probability
- nGpuLayers
Set the number of layers to store in VRAM (-1 - use default)
- nGpuLayersDraft
Set the number of layers to store in VRAM for the draft model (-1 - use default)
- gpuSplitMode
Set how to split the model across GPUs
- mainGpu
Set the main GPU that is used for scratch and small tensors.
- tensorSplit
Set how split tensors should be distributed across GPUs
- grpAttnN
Set the group-attention factor
- grpAttnW
Set the group-attention width
- ropeFreqBase
Set the RoPE base frequency, used by NTK-aware scaling
- ropeFreqScale
Set the RoPE frequency scaling factor, expands context by a factor of 1/N
- yarnExtFactor
Set the YaRN extrapolation mix factor
- yarnAttnFactor
Set the YaRN scale sqrt(t) or attention magnitude
- yarnBetaFast
Set the YaRN low correction dim or beta
- yarnBetaSlow
Set the YaRN high correction dim or alpha
- yarnOrigCtx
Set the YaRN original context size of model
- defragmentationThreshold
Set the KV cache defragmentation threshold
- numaStrategy
Set optimization strategies that help on some NUMA systems (if available)
- ropeScalingType
Set the RoPE frequency scaling method, defaults to linear unless specified by the model
- poolingType
Set the pooling type for embeddings, use model default if unspecified
- modelDraft
Set the draft model for speculative decoding
- modelAlias
Set a model alias
- lookupCacheStaticFilePath
Set path to static lookup cache to use for lookup decoding (not updated by generation)
- lookupCacheDynamicFilePath
Set path to dynamic lookup cache to use for lookup decoding (updated by generation)
- embedding
Whether to load model with embedding support
- flashAttention
Whether to enable Flash Attention
- inputPrefixBos
Whether to add prefix BOS to user inputs, preceding the –in-prefix string
- useMmap
Whether to use memory-map model (faster load but may increase pageouts if not using mlock)
- useMlock
Whether to force the system to keep model in RAM rather than swapping or compressing
- noKvOffload
Whether to disable KV offload
- systemPrompt
Set a system prompt to use
- chatTemplate
The chat template to use
- inputPrefix
Set the prompt to start generation with
- inputSuffix
Set a suffix for infilling
- cachePrompt
Whether to remember the prompt to avoid reprocessing it
- nPredict
Set the number of tokens to predict
- topK
Set top-k sampling
- topP
Set top-p sampling
- minP
Set min-p sampling
- tfsZ
Set tail free sampling, parameter z
- typicalP
Set locally typical sampling, parameter p
- temperature
Set the temperature
- dynatempRange
Set the dynamic temperature range
- dynatempExponent
Set the dynamic temperature exponent
- repeatLastN
Set the last n tokens to consider for penalties
- repeatPenalty
Set the penalty of repeated sequences of tokens
- frequencyPenalty
Set the repetition alpha frequency penalty
- presencePenalty
Set the repetition alpha presence penalty
- miroStat
Set MiroStat sampling strategies.
- mirostatTau
Set the MiroStat target entropy, parameter tau
- mirostatEta
Set the MiroStat learning rate, parameter eta
- penalizeNl
Whether to penalize newline tokens
- nKeep
Set the number of tokens to keep from the initial prompt
- seed
Set the RNG seed
- nProbs
Set the amount top tokens probabilities to output if greater than 0.
- minKeep
Set the amount of tokens the samplers should return at least (0 = disabled)
- grammar
Set BNF-like grammar to constrain generations
- penaltyPrompt
Override which part of the prompt is penalized for repetition.
- ignoreEos
Set whether to ignore end of stream token and continue generating (implies –logit-bias 2-inf)
- disableTokenIds
Set the token ids to disable in the completion
- stopStrings
Set strings upon seeing which token generation is stopped
- samplers
Set which samplers to use for token generation in the given order
- useChatTemplate
Set whether or not generate should apply a chat template
Notes
To use GPU inference with this annotator, make sure to use the Spark NLP GPU package and set the number of GPU layers with the setNGpuLayers method.
When using larger models, we recommend adjusting GPU usage with setNCtx and setNGpuLayers according to your hardware to avoid out-of-memory errors.
References
`Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension
Paper Abstract: We present BART, a denoising autoencoder for pretraining sequence-to-sequence models. BART is trained by (1) corrupting text with an arbitrary noising function, and (2) learning a model to reconstruct the original text. It uses a standard Tranformer-based neural machine translation architecture which, despite its simplicity, can be seen as generalizing BERT (due to the bidirectional encoder), GPT (with the left-to-right decoder), and many other more recent pretraining schemes. We evaluate a number of noising approaches, finding the best performance by both randomly shuffling the order of the original sentences and using a novel in-filling scheme, where spans of text are replaced with a single mask token. BART is particularly effective when fine tuned for text generation but also works well for comprehension tasks. It matches the performance of RoBERTa with comparable training resources on GLUE and SQuAD, achieves new state-of-the-art results on a range of abstractive dialogue, question answering, and summarization tasks, with gains of up to 6 ROUGE. BART also provides a 1.1 BLEU increase over a back-translation system for machine translation, with only target language pretraining. We also report ablation experiments that replicate other pretraining schemes within the BART framework, to better measure which factors most influence end-task performance.
Examples
>>> import sparknlp >>> from sparknlp.base import * >>> from sparknlp.annotator import * >>> from pyspark.ml import Pipeline >>> document = DocumentAssembler() \ ... .setInputCol("text") \ ... .setOutputCol("document") >>> autoGGUFModel = AutoGGUFModel.pretrained() \ ... .setInputCols(["document"]) \ ... .setOutputCol("completions") \ ... .setBatchSize(4) \ ... .setNPredict(20) \ ... .setNGpuLayers(99) \ ... .setTemperature(0.4) \ ... .setTopK(40) \ ... .setTopP(0.9) \ ... .setPenalizeNl(True) >>> pipeline = Pipeline().setStages([document, autoGGUFModel]) >>> data = spark.createDataFrame([["Hello, I am a"]]).toDF("text") >>> result = pipeline.fit(data).transform(data) >>> result.select("completions").show(truncate = False) +-----------------------------------------------------------------------------------------------------------------------------------+ |completions | +-----------------------------------------------------------------------------------------------------------------------------------+ |[{document, 0, 78, new user. I am currently working on a project and I need to create a list of , {prompt -> Hello, I am a}, []}]| +-----------------------------------------------------------------------------------------------------------------------------------+
- setNThreadsDraft(nThreadsDraft: int)[source]#
Set the number of threads to use during draft generation
- setNThreadsBatch(nThreadsBatch: int)[source]#
Set the number of threads to use during batch and prompt processing
- setNThreadsBatchDraft(nThreadsBatchDraft: int)[source]#
Set the number of threads to use during batch and prompt processing
- setNBatch(nBatch: int)[source]#
Set the logical batch size for prompt processing (must be >=32 to use BLAS)
- setNUbatch(nUbatch: int)[source]#
Set the physical batch size for prompt processing (must be >=32 to use BLAS)
- setNGpuLayers(nGpuLayers: int)[source]#
Set the number of layers to store in VRAM (-1 - use default)
- setNGpuLayersDraft(nGpuLayersDraft: int)[source]#
Set the number of layers to store in VRAM for the draft model (-1 - use default)
- setTensorSplit(tensorSplit: List[float])[source]#
Set how split tensors should be distributed across GPUs
- setRopeFreqBase(ropeFreqBase: float)[source]#
Set the RoPE base frequency, used by NTK-aware scaling
- setRopeFreqScale(ropeFreqScale: float)[source]#
Set the RoPE frequency scaling factor, expands context by a factor of 1/N
- setDefragmentationThreshold(defragmentationThreshold: float)[source]#
Set the KV cache defragmentation threshold
- setNumaStrategy(numaStrategy: str)[source]#
Set optimization strategies that help on some NUMA systems (if available)
- setRopeScalingType(ropeScalingType: str)[source]#
Set the RoPE frequency scaling method, defaults to linear unless specified by the model
- setPoolingType(poolingType: bool)[source]#
Set the pooling type for embeddings, use model default if unspecified
- setLookupCacheStaticFilePath(lookupCacheStaticFilePath: str)[source]#
Set path to static lookup cache to use for lookup decoding (not updated by generation)
- setLookupCacheDynamicFilePath(lookupCacheDynamicFilePath: str)[source]#
Set path to dynamic lookup cache to use for lookup decoding (updated by generation)
- setInputPrefixBos(inputPrefixBos: bool)[source]#
Whether to add prefix BOS to user inputs, preceding the –in-prefix bool
- setUseMmap(useMmap: bool)[source]#
Whether to use memory-map model (faster load but may increase pageouts if not using mlock)
- setUseMlock(useMlock: bool)[source]#
Whether to force the system to keep model in RAM rather than swapping or compressing
- setDynamicTemperatureRange(dynamicTemperatureRange: float)[source]#
Set the dynamic temperature range
- setDynamicTemperatureExponent(dynamicTemperatureExponent: float)[source]#
Set the dynamic temperature exponent
- setNProbs(nProbs: int)[source]#
Set the amount top tokens probabilities to output if greater than 0.
- setMinKeep(minKeep: int)[source]#
Set the amount of tokens the samplers should return at least (0 = disabled)
- setPenaltyPrompt(penaltyPrompt: str)[source]#
Override which part of the prompt is penalized for repetition.
- setIgnoreEos(ignoreEos: bool)[source]#
Set whether to ignore end of stream token and continue generating (implies –logit-bias 2-inf)
- setDisableTokenIds(disableTokenIds: List[int])[source]#
Set the token ids to disable in the completion
- setStopStrings(stopStrings: List[str])[source]#
Set strings upon seeing which token generation is stopped
- setSamplers(samplers: List[str])[source]#
Set which samplers to use for token generation in the given order
- setUseChatTemplate(useChatTemplate: bool)[source]#
Set whether generate should apply a chat template
- static loadSavedModel(folder, spark_session)[source]#
Loads a locally saved model.
- Parameters:
- folderstr
Folder of the saved model
- spark_sessionpyspark.sql.SparkSession
The current SparkSession
- Returns:
- AutoGGUFModel
The restored model
- static pretrained(name='phi3.5_mini_4k_instruct_q4_gguf', lang='en', remote_loc=None)[source]#
Downloads and loads a pretrained model.
- Parameters:
- namestr, optional
Name of the pretrained model, by default “phi3.5_mini_4k_instruct_q4_gguf”
- langstr, optional
Language of the pretrained model, by default “en”
- remote_locstr, optional
Optional remote address of the resource, by default None. Will use Spark NLPs repositories otherwise.
- Returns:
- AutoGGUFModel
The restored model