sparknlp.annotator.seq2seq.nllb_transformer
#
Contains classes for the NLLBTransformer.
Module Contents#
Classes#
NLLB : multilingual translation model |
- class NLLBTransformer(classname='com.johnsnowlabs.nlp.annotators.seq2seq.NLLBTransformer', java_model=None)[source]#
NLLB : multilingual translation model
NLLB is a multilingual encoder-decoder (seq-to-seq) model trained for Many-to-Many multilingual translation.
The model can directly translate between 200+ languages.
Pretrained models can be loaded with
pretrained()
of the companion object:>>> nllb = NLLBTransformer.pretrained() \ ... .setInputCols(["document"]) \ ... .setOutputCol("generation")
The default model is
"nllb_418M"
, if no name is provided. For available pretrained models please see the Models Hub.Input Annotation types
Output Annotation type
DOCUMENT
DOCUMENT
- Parameters:
- configProtoBytes
ConfigProto from tensorflow, serialized into byte array.
- minOutputLength
Minimum length of the sequence to be generated, by default 0
- maxOutputLength
Maximum length of output text, by default 20
- doSample
Whether or not to use sampling; use greedy decoding otherwise, by default False
- temperature
The value used to module the next token probabilities, by default 1.0
- topK
The number of highest probability vocabulary tokens to keep for top-k-filtering, by default 50
- topP
Top cumulative probability for vocabulary tokens, by default 1.0
If set to float < 1, only the most probable tokens with probabilities that add up to
topP
or higher are kept for generation.- repetitionPenalty
The parameter for repetition penalty, 1.0 means no penalty. , by default 1.0
- noRepeatNgramSize
If set to int > 0, all ngrams of that size can only occur once, by default 0
- ignoreTokenIds
A list of token ids which are ignored in the decoder’s output, by default []
- srcLang
Source Language (Default: en)
- tgtLang
Target Language (Default: fr)
- Languages Covered
- —–
- Acehnese (Arabic script) (ace_Arab), Acehnese (Latin script) (ace_Latn), Mesopotamian Arabic
- (acm_Arab), Ta’izzi-Adeni Arabic (acq_Arab), Tunisian Arabic (aeb_Arab), Afrikaans (afr_Latn),
- South Levantine Arabic (ajp_Arab), Akan (aka_Latn), Amharic (amh_Ethi), North Levantine Arabic
- (apc_Arab), Modern Standard Arabic (arb_Arab), Modern Standard Arabic (Romanized) (arb_Latn),
- Najdi Arabic (ars_Arab), Moroccan Arabic (ary_Arab), Egyptian Arabic (arz_Arab), Assamese
- (asm_Beng), Asturian (ast_Latn), Awadhi (awa_Deva), Central Aymara (ayr_Latn), South
- Azerbaijani (azb_Arab), North Azerbaijani (azj_Latn), Bashkir (bak_Cyrl), Bambara (bam_Latn),
- Balinese (ban_Latn), Belarusian (bel_Cyrl), Bemba (bem_Latn), Bengali (ben_Beng), Bhojpuri
- (bho_Deva), Banjar (Arabic script) (bjn_Arab), Banjar (Latin script) (bjn_Latn), Standard
- Tibetan (bod_Tibt), Bosnian (bos_Latn), Buginese (bug_Latn), Bulgarian (bul_Cyrl), Catalan
- (cat_Latn), Cebuano (ceb_Latn), Czech (ces_Latn), Chokwe (cjk_Latn), Central Kurdish
- (ckb_Arab), Crimean Tatar (crh_Latn), Welsh (cym_Latn), Danish (dan_Latn), German (deu_Latn),
- Southwestern Dinka (dik_Latn), Dyula (dyu_Latn), Dzongkha (dzo_Tibt), Greek (ell_Grek),
- English (eng_Latn), Esperanto (epo_Latn), Estonian (est_Latn), Basque (eus_Latn), Ewe
- (ewe_Latn), Faroese (fao_Latn), Fijian (fij_Latn), Finnish (fin_Latn), Fon (fon_Latn), French
- (fra_Latn), Friulian (fur_Latn), Nigerian Fulfulde (fuv_Latn), Scottish Gaelic (gla_Latn),
- Irish (gle_Latn), Galician (glg_Latn), Guarani (grn_Latn), Gujarati (guj_Gujr), Haitian Creole
- (hat_Latn), Hausa (hau_Latn), Hebrew (heb_Hebr), Hindi (hin_Deva), Chhattisgarhi (hne_Deva),
- Croatian (hrv_Latn), Hungarian (hun_Latn), Armenian (hye_Armn), Igbo (ibo_Latn), Ilocano
- (ilo_Latn), Indonesian (ind_Latn), Icelandic (isl_Latn), Italian (ita_Latn), Javanese
- (jav_Latn), Japanese (jpn_Jpan), Kabyle (kab_Latn), Jingpho (kac_Latn), Kamba (kam_Latn),
- Kannada (kan_Knda), Kashmiri (Arabic script) (kas_Arab), Kashmiri (Devanagari script)
- (kas_Deva), Georgian (kat_Geor), Central Kanuri (Arabic script) (knc_Arab), Central Kanuri
- (Latin script) (knc_Latn), Kazakh (kaz_Cyrl), Kabiyè (kbp_Latn), Kabuverdianu (kea_Latn),
- Khmer (khm_Khmr), Kikuyu (kik_Latn), Kinyarwanda (kin_Latn), Kyrgyz (kir_Cyrl), Kimbundu
- (kmb_Latn), Northern Kurdish (kmr_Latn), Kikongo (kon_Latn), Korean (kor_Hang), Lao
- (lao_Laoo), Ligurian (lij_Latn), Limburgish (lim_Latn), Lingala (lin_Latn), Lithuanian
- (lit_Latn), Lombard (lmo_Latn), Latgalian (ltg_Latn), Luxembourgish (ltz_Latn), Luba-Kasai
- (lua_Latn), Ganda (lug_Latn), Luo (luo_Latn), Mizo (lus_Latn), Standard Latvian (lvs_Latn),
- Magahi (mag_Deva), Maithili (mai_Deva), Malayalam (mal_Mlym), Marathi (mar_Deva), Minangkabau
- (Arabic script) (min_Arab), Minangkabau (Latin script) (min_Latn), Macedonian (mkd_Cyrl),
- Plateau Malagasy (plt_Latn), Maltese (mlt_Latn), Meitei (Bengali script) (mni_Beng), Halh
- Mongolian (khk_Cyrl), Mossi (mos_Latn), Maori (mri_Latn), Burmese (mya_Mymr), Dutch
- (nld_Latn), Norwegian Nynorsk (nno_Latn), Norwegian Bokmål (nob_Latn), Nepali (npi_Deva),
- Northern Sotho (nso_Latn), Nuer (nus_Latn), Nyanja (nya_Latn), Occitan (oci_Latn), West
- Central Oromo (gaz_Latn), Odia (ory_Orya), Pangasinan (pag_Latn), Eastern Panjabi (pan_Guru),
- Papiamento (pap_Latn), Western Persian (pes_Arab), Polish (pol_Latn), Portuguese (por_Latn),
- Dari (prs_Arab), Southern Pashto (pbt_Arab), Ayacucho Quechua (quy_Latn), Romanian (ron_Latn),
- Rundi (run_Latn), Russian (rus_Cyrl), Sango (sag_Latn), Sanskrit (san_Deva), Santali
- (sat_Olck), Sicilian (scn_Latn), Shan (shn_Mymr), Sinhala (sin_Sinh), Slovak (slk_Latn),
- Slovenian (slv_Latn), Samoan (smo_Latn), Shona (sna_Latn), Sindhi (snd_Arab), Somali
- (som_Latn), Southern Sotho (sot_Latn), Spanish (spa_Latn), Tosk Albanian (als_Latn), Sardinian
- (srd_Latn), Serbian (srp_Cyrl), Swati (ssw_Latn), Sundanese (sun_Latn), Swedish (swe_Latn),
- Swahili (swh_Latn), Silesian (szl_Latn), Tamil (tam_Taml), Tatar (tat_Cyrl), Telugu
- (tel_Telu), Tajik (tgk_Cyrl), Tagalog (tgl_Latn), Thai (tha_Thai), Tigrinya (tir_Ethi),
- Tamasheq (Latin script) (taq_Latn), Tamasheq (Tifinagh script) (taq_Tfng), Tok Pisin
- (tpi_Latn), Tswana (tsn_Latn), Tsonga (tso_Latn), Turkmen (tuk_Latn), Tumbuka (tum_Latn),
- Turkish (tur_Latn), Twi (twi_Latn), Central Atlas Tamazight (tzm_Tfng), Uyghur (uig_Arab),
- Ukrainian (ukr_Cyrl), Umbundu (umb_Latn), Urdu (urd_Arab), Northern Uzbek (uzn_Latn), Venetian
- (vec_Latn), Vietnamese (vie_Latn), Waray (war_Latn), Wolof (wol_Latn), Xhosa (xho_Latn),
- Eastern Yiddish (ydd_Hebr), Yoruba (yor_Latn), Yue Chinese (yue_Hant), Chinese (Simplified)
- (zho_Hans), Chinese (Traditional) (zho_Hant), Standard Malay (zsm_Latn), Zulu (zul_Latn).
References
Paper Abstract:
Driven by the goal of eradicating language barriers on a global scale, machine translation has solidified itself as a key focus of artificial intelligence research today. However, such efforts have coalesced around a small subset of languages, leaving behind the vast majority of mostly low-resource languages. What does it take to break the 200 language barrier while ensuring safe, high quality results, all while keeping ethical considerations in mind? In No Language Left Behind, we took on this challenge by first contextualizing the need for low-resource language translation support through exploratory interviews with native speakers. Then, we created datasets and models aimed at narrowing the performance gap between low and high-resource languages. More specifically, we developed a conditional compute model based on Sparsely Gated Mixture of Experts that is trained on data obtained with novel and effective data mining techniques tailored for low-resource languages. We propose multiple architectural and training improvements to counteract overfitting while training on thousands of tasks. Critically, we evaluated the performance of over 40,000 different translation directions using a human-translated benchmark, Flores-200, and combined human evaluation with a novel toxicity benchmark covering all languages in Flores-200 to assess translation safety. Our model achieves an improvement of 44% BLEU relative to the previous state-of-the-art, laying important groundwork towards realizing a universal translation system.
Examples
>>> import sparknlp >>> from sparknlp.base import * >>> from sparknlp.annotator import * >>> from pyspark.ml import Pipeline >>> documentAssembler = DocumentAssembler() \ ... .setInputCol("text") \ ... .setOutputCol("documents") >>> nllb = NLLBTransformer.pretrained("nllb_418M") \ ... .setInputCols(["documents"]) \ ... .setMaxOutputLength(50) \ ... .setOutputCol("generation") \ ... .setSrcLang("zho_Hans") \ ... .setTgtLang("eng_Latn") >>> pipeline = Pipeline().setStages([documentAssembler, nllb]) >>> data = spark.createDataFrame([["生活就像一盒巧克力。"]]).toDF("text") >>> result = pipeline.fit(data).transform(data) >>> result.select("summaries.generation").show(truncate=False) +-------------------------------------------------------------------------------------------+ |result | +-------------------------------------------------------------------------------------------+ |[ Life is like a box of chocolate.] | +-------------------------------------------------------------------------------------------+
- setIgnoreTokenIds(value)[source]#
A list of token ids which are ignored in the decoder’s output.
- Parameters:
- valueList[int]
The words to be filtered out
- setConfigProtoBytes(b)[source]#
Sets configProto from tensorflow, serialized into byte array.
- Parameters:
- bList[int]
ConfigProto from tensorflow, serialized into byte array
- setMinOutputLength(value)[source]#
Sets minimum length of the sequence to be generated.
- Parameters:
- valueint
Minimum length of the sequence to be generated
- setMaxOutputLength(value)[source]#
Sets maximum length of output text.
- Parameters:
- valueint
Maximum length of output text
- setDoSample(value)[source]#
Sets whether or not to use sampling, use greedy decoding otherwise.
- Parameters:
- valuebool
Whether or not to use sampling; use greedy decoding otherwise
- setTemperature(value)[source]#
Sets the value used to module the next token probabilities.
- Parameters:
- valuefloat
The value used to module the next token probabilities
- setTopK(value)[source]#
Sets the number of highest probability vocabulary tokens to keep for top-k-filtering.
- Parameters:
- valueint
Number of highest probability vocabulary tokens to keep
- setTopP(value)[source]#
Sets the top cumulative probability for vocabulary tokens.
If set to float < 1, only the most probable tokens with probabilities that add up to
topP
or higher are kept for generation.- Parameters:
- valuefloat
Cumulative probability for vocabulary tokens
- setRepetitionPenalty(value)[source]#
Sets the parameter for repetition penalty. 1.0 means no penalty.
- Parameters:
- valuefloat
The repetition penalty
References
See Ctrl: A Conditional Transformer Language Model For Controllable Generation for more details.
- setNoRepeatNgramSize(value)[source]#
Sets size of n-grams that can only occur once.
If set to int > 0, all ngrams of that size can only occur once.
- Parameters:
- valueint
N-gram size can only occur once
- setBeamSize(value)[source]#
Sets the number of beam size for beam search, by default 4.
- Parameters:
- valueint
Number of beam size for beam search
- static loadSavedModel(folder, spark_session, use_openvino=False)[source]#
Loads a locally saved model.
- Parameters:
- folderstr
Folder of the saved model
- spark_sessionpyspark.sql.SparkSession
The current SparkSession
- Returns:
- NLLBTransformer
The restored model
- static pretrained(name='nllb_418M', lang='xx', remote_loc=None)[source]#
Downloads and loads a pretrained model.
- Parameters:
- namestr, optional
Name of the pretrained model, by default “nllb_418M”
- langstr, optional
Language of the pretrained model, by default “en”
- remote_locstr, optional
Optional remote address of the resource, by default None. Will use Spark NLPs repositories otherwise.
- Returns:
- NLLBTransformer
The restored model