sparknlp.annotator.seq2seq.phi2_transformer#

Contains classes for the Phi2Transformer.

Module Contents#

Classes#

Phi2Transformer

Phi-2: Textbooks Are All You Need.

class Phi2Transformer(classname='com.johnsnowlabs.nlp.annotators.seq2seq.Phi2Transformer', java_model=None)[source]#

Phi-2: Textbooks Are All You Need.

Phi-2 is a Transformer with 2.7 billion parameters. It was trained using the same data sources as Phi-1.5, augmented with a new data source that consists of various NLP synthetic texts and filtered websites (for safety and educational value). When assessed against benchmarks testing common sense, language understanding, and logical reasoning, Phi-2 showcased a nearly state-of-the-art performance among models with less than 13 billion parameters.

Phi-2 hasn’t been fine-tuned through reinforcement learning from human feedback. The intention behind crafting this open-source model is to provide the research community with a non-restricted small model to explore vital safety challenges, such as reducing toxicity, understanding societal biases, enhancing controllability, and more.

Pretrained models can be loaded with pretrained() of the companion object:

>>> phi2 = Phi2Transformer.pretrained() \
...     .setInputCols(["document"]) \
...     .setOutputCol("generation")

The default model is "llam2-7b", if no name is provided. For available pretrained models please see the Models Hub.

Input Annotation types

Output Annotation type

DOCUMENT

DOCUMENT

Parameters:
configProtoBytes

ConfigProto from tensorflow, serialized into byte array.

minOutputLength

Minimum length of the sequence to be generated, by default 0

maxOutputLength

Maximum length of output text, by default 20

doSample

Whether or not to use sampling; use greedy decoding otherwise, by default False

temperature

The value used to module the next token probabilities, by default 1.0

topK

The number of highest probability vocabulary tokens to keep for top-k-filtering, by default 50

topP

Top cumulative probability for vocabulary tokens, by default 1.0

If set to float < 1, only the most probable tokens with probabilities that add up to topP or higher are kept for generation.

repetitionPenalty

The parameter for repetition penalty, 1.0 means no penalty. , by default 1.0

noRepeatNgramSize

If set to int > 0, all ngrams of that size can only occur once, by default 0

ignoreTokenIds

A list of token ids which are ignored in the decoder’s output, by default []

Notes

This is a very computationally expensive module especially on larger sequence. The use of an accelerator such as GPU is recommended.

References

Paper Abstract:

In this work, we develop and release Llama 2, a collection of pretrained and fine-tuned large language models (LLMs) ranging in scale from 7 billion to 70 billion parameters. Our fine-tuned LLMs, called Llama 2-Chat, are optimized for dialogue use cases. Our models outperform open-source chat models on most benchmarks we tested, and based on our human evaluations for helpfulness and safety, may be a suitable substitute for closed-source models. We provide a detailed description of our approach to fine-tuning and safety improvements of Llama 2-Chat in order to enable the community to build on our work and contribute to the responsible development of LLMs.

Examples

>>> import sparknlp
>>> from sparknlp.base import *
>>> from sparknlp.annotator import *
>>> from pyspark.ml import Pipeline
>>> documentAssembler = DocumentAssembler() \
...     .setInputCol("text") \
...     .setOutputCol("documents")
>>> phi2 = Phi2Transformer.pretrained("phi2") \
...     .setInputCols(["documents"]) \
...     .setMaxOutputLength(50) \
...     .setOutputCol("generation")
>>> pipeline = Pipeline().setStages([documentAssembler, phi2])
>>> data = spark.createDataFrame([["My name is Leonardo."]]).toDF("text")
>>> result = pipeline.fit(data).transform(data)
>>> result.select("summaries.generation").show(truncate=False)
+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|result                                                                                                                                                                                              |
+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|[My name is Leonardo . I am a student of the University of California, Berkeley. I am interested in the field of Artificial Intelligence and its applications in the real world. I have a strong    |
| passion for learning and am always looking for ways to improve my knowledge and skills]                                                                                                            |
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
setIgnoreTokenIds(value)[source]#

A list of token ids which are ignored in the decoder’s output.

Parameters:
valueList[int]

The words to be filtered out

setConfigProtoBytes(b)[source]#

Sets configProto from tensorflow, serialized into byte array.

Parameters:
bList[int]

ConfigProto from tensorflow, serialized into byte array

setMinOutputLength(value)[source]#

Sets minimum length of the sequence to be generated.

Parameters:
valueint

Minimum length of the sequence to be generated

setMaxOutputLength(value)[source]#

Sets maximum length of output text.

Parameters:
valueint

Maximum length of output text

setDoSample(value)[source]#

Sets whether or not to use sampling, use greedy decoding otherwise.

Parameters:
valuebool

Whether or not to use sampling; use greedy decoding otherwise

setTemperature(value)[source]#

Sets the value used to module the next token probabilities.

Parameters:
valuefloat

The value used to module the next token probabilities

setTopK(value)[source]#

Sets the number of highest probability vocabulary tokens to keep for top-k-filtering.

Parameters:
valueint

Number of highest probability vocabulary tokens to keep

setTopP(value)[source]#

Sets the top cumulative probability for vocabulary tokens.

If set to float < 1, only the most probable tokens with probabilities that add up to topP or higher are kept for generation.

Parameters:
valuefloat

Cumulative probability for vocabulary tokens

setRepetitionPenalty(value)[source]#

Sets the parameter for repetition penalty. 1.0 means no penalty.

Parameters:
valuefloat

The repetition penalty

References

See Ctrl: A Conditional Transformer Language Model For Controllable Generation for more details.

setNoRepeatNgramSize(value)[source]#

Sets size of n-grams that can only occur once.

If set to int > 0, all ngrams of that size can only occur once.

Parameters:
valueint

N-gram size can only occur once

static loadSavedModel(folder, spark_session, use_openvino=False)[source]#

Loads a locally saved model.

Parameters:
folderstr

Folder of the saved model

spark_sessionpyspark.sql.SparkSession

The current SparkSession

Returns:
Phi2Transformer

The restored model

static pretrained(name='phi2', lang='en', remote_loc=None)[source]#

Downloads and loads a pretrained model.

Parameters:
namestr, optional

Name of the pretrained model, by default “phi2”

langstr, optional

Language of the pretrained model, by default “en”

remote_locstr, optional

Optional remote address of the resource, by default None. Will use Spark NLPs repositories otherwise.

Returns:
Phi2Transformer

The restored model