sparknlp.annotator.dependency.dependency_parser
#
Contains classes for the DependencyParser.
Module Contents#
Classes#
Trains an unlabeled parser that finds a grammatical relations between two |
|
Unlabeled parser that finds a grammatical relation between two words in a |
- class DependencyParserApproach[source]#
Trains an unlabeled parser that finds a grammatical relations between two words in a sentence.
For instantiated/pretrained models, see
DependencyParserModel
.Dependency parser provides information about word relationship. For example, dependency parsing can tell you what the subjects and objects of a verb are, as well as which words are modifying (describing) the subject. This can help you find precise answers to specific questions.
The required training data can be set in two different ways (only one can be chosen for a particular model):
Dependency treebank in the Penn Treebank format set with
setDependencyTreeBank
Dataset in the CoNLL-U format set with
setConllU
Apart from that, no additional training data is needed.
Input Annotation types
Output Annotation type
DOCUMENT, POS, TOKEN
DEPENDENCY
- Parameters:
- dependencyTreeBank
Dependency treebank source files
- conllU
Universal Dependencies source files
- numberOfIterations
Number of iterations in training, converges to better accuracy, by default 10
See also
TypedDependencyParserApproach
to extract labels for the dependencies
Examples
>>> import sparknlp >>> from sparknlp.base import * >>> from sparknlp.annotator import * >>> from pyspark.ml import Pipeline >>> documentAssembler = DocumentAssembler() \ ... .setInputCol("text") \ ... .setOutputCol("document") >>> sentence = SentenceDetector() \ ... .setInputCols(["document"]) \ ... .setOutputCol("sentence") >>> tokenizer = Tokenizer() \ ... .setInputCols(["sentence"]) \ ... .setOutputCol("token") >>> posTagger = PerceptronModel.pretrained() \ ... .setInputCols(["sentence", "token"]) \ ... .setOutputCol("pos") >>> dependencyParserApproach = DependencyParserApproach() \ ... .setInputCols(["sentence", "pos", "token"]) \ ... .setOutputCol("dependency") \ ... .setDependencyTreeBank("src/test/resources/parser/unlabeled/dependency_treebank") >>> pipeline = Pipeline().setStages([ ... documentAssembler, ... sentence, ... tokenizer, ... posTagger, ... dependencyParserApproach ... ]) >>> emptyDataSet = spark.createDataFrame([[""]]).toDF("text") >>> pipelineModel = pipeline.fit(emptyDataSet)
Additional training data is not needed, the dependency parser relies on the dependency tree bank / CoNLL-U only.
- setNumberOfIterations(value)[source]#
Sets number of iterations in training, converges to better accuracy, by default 10.
- Parameters:
- valueint
Number of iterations
- setDependencyTreeBank(path, read_as=ReadAs.TEXT, options={'key': 'value'})[source]#
Sets dependency treebank source files.
- Parameters:
- pathstr
Path to the source files
- read_asstr, optional
How to read the file, by default ReadAs.TEXT
- optionsdict, optional
Options to read the resource, by default {“key”: “value”}
- setConllU(path, read_as=ReadAs.TEXT, options={'key': 'value'})[source]#
Sets Universal Dependencies source files.
- Parameters:
- pathstr
Path to the source files
- read_asstr, optional
How to read the file, by default ReadAs.TEXT
- optionsdict, optional
Options to read the resource, by default {“key”: “value”}
- class DependencyParserModel(classname='com.johnsnowlabs.nlp.annotators.parser.dep.DependencyParserModel', java_model=None)[source]#
Unlabeled parser that finds a grammatical relation between two words in a sentence.
Dependency parser provides information about word relationship. For example, dependency parsing can tell you what the subjects and objects of a verb are, as well as which words are modifying (describing) the subject. This can help you find precise answers to specific questions.
This is the instantiated model of the
DependencyParserApproach
. For training your own model, please see the documentation of that class.Pretrained models can be loaded with
pretrained()
of the companion object:>>> dependencyParserApproach = DependencyParserModel.pretrained() \ ... .setInputCols(["sentence", "pos", "token"]) \ ... .setOutputCol("dependency")
The default model is
"dependency_conllu"
, if no name is provided. For available pretrained models please see the Models Hub.For extended examples of usage, see the Examples.
Input Annotation types
Output Annotation type
[String]DOCUMENT, POS, TOKEN
DEPENDENCY
- Parameters:
- perceptron
Dependency parsing perceptron features
See also
TypedDependencyParserMdoel
to extract labels for the dependencies
Examples
>>> import sparknlp >>> from sparknlp.base import * >>> from sparknlp.annotator import * >>> from pyspark.ml import Pipeline >>> documentAssembler = DocumentAssembler() \ ... .setInputCol("text") \ ... .setOutputCol("document") >>> sentence = SentenceDetector() \ ... .setInputCols(["document"]) \ ... .setOutputCol("sentence") >>> tokenizer = Tokenizer() \ ... .setInputCols(["sentence"]) \ ... .setOutputCol("token") >>> posTagger = PerceptronModel.pretrained() \ ... .setInputCols(["sentence", "token"]) \ ... .setOutputCol("pos") >>> dependencyParser = DependencyParserModel.pretrained() \ ... .setInputCols(["sentence", "pos", "token"]) \ ... .setOutputCol("dependency") >>> pipeline = Pipeline().setStages([ ... documentAssembler, ... sentence, ... tokenizer, ... posTagger, ... dependencyParser ... ]) >>> data = spark.createDataFrame([[ ... "Unions representing workers at Turner Newall say they are 'disappointed' after talks with stricken parent " + ... "firm Federal Mogul." ... ]]).toDF("text") >>> result = pipeline.fit(data).transform(data) >>> result.selectExpr("explode(arrays_zip(token.result, dependency.result)) as cols") \ ... .selectExpr("cols['0'] as token", "cols['1'] as dependency").show(8, truncate = False) +------------+------------+ |token |dependency | +------------+------------+ |Unions |ROOT | |representing|workers | |workers |Unions | |at |Turner | |Turner |workers | |Newall |say | |say |Unions | |they |disappointed| +------------+------------+
- static pretrained(name='dependency_conllu', lang='en', remote_loc=None)[source]#
Downloads and loads a pretrained model.
- Parameters:
- namestr, optional
Name of the pretrained model, by default “dependency_conllu”
- langstr, optional
Language of the pretrained model, by default “en”
- remote_locstr, optional
Optional remote address of the resource, by default None. Will use Spark NLPs repositories otherwise.
- Returns:
- DependencyParserModel
The restored model