sparknlp.annotator.embeddings.roberta_sentence_embeddings
#
Contains classes for RoBertaSentenceEmbeddings.
Module Contents#
Classes#
Sentence-level embeddings using RoBERTa. The RoBERTa model was proposed in RoBERTa: A Robustly Optimized BERT |
- class RoBertaSentenceEmbeddings(classname='com.johnsnowlabs.nlp.embeddings.RoBertaSentenceEmbeddings', java_model=None)[source]#
Sentence-level embeddings using RoBERTa. The RoBERTa model was proposed in RoBERTa: A Robustly Optimized BERT Pretraining Approach by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov. It is based on Google’s BERT model released in 2018. It builds on BERT and modifies key hyperparameters, removing the next-sentence pretraining objective and training with much larger mini-batches and learning rates. Pretrained models can be loaded with pretrained of the companion object:
Pretrained models can be loaded with
pretrained()
of the companion object:>>> embeddings = RoBertaSentenceEmbeddings.pretrained() \ ... .setInputCols(["sentence"]) \ ... .setOutputCol("sentence_embeddings")
The default model is
"sent_roberta_base"
, if no name is provided.For available pretrained models please see the Models Hub.
Input Annotation types
Output Annotation type
DOCUMENT
SENTENCE_EMBEDDINGS
- Parameters:
- batchSize
Size of every batch, by default 8
- caseSensitive
Whether to ignore case in tokens for embeddings matching, by default False
- dimension
Number of embedding dimensions, by default 768
- maxSentenceLength
Max sentence length to process, by default 128
- configProtoBytes
ConfigProto from tensorflow, serialized into byte array.
References
RoBERTa: A Robustly Optimized BERT Pretraining Approach
Paper abstract:
Language model pretraining has led to significant performance gains but careful comparison between different approaches is challenging. Training is computationally expensive, often done on private datasets of different sizes, and, as we will show, hyperparameter choices have significant impact on the final results. We present a replication study of BERT pretraining (Devlin et al., 2019) that carefully measures the impact of many key hyperparameters and training data size. We find that BERT was significantly undertrained, and can match or exceed the performance of every model published after it. Our best model achieves state-of-the-art results on GLUE, RACE and SQuAD. These results highlight the importance of previously overlooked design choices, and raise questions about the source of recently reported improvements. We release our models and code.
Examples
>>> import sparknlp >>> from sparknlp.base import * >>> from sparknlp.annotator import * >>> from pyspark.ml import Pipeline >>> documentAssembler = DocumentAssembler() \ ... .setInputCol("text") \ ... .setOutputCol("document") >>> sentence = SentenceDetector() \ ... .setInputCols(["document"]) \ ... .setOutputCol("sentence") >>> embeddings = RoBertaSentenceEmbeddings.pretrained() \ ... .setInputCols(["sentence"]) \ ... .setOutputCol("sentence_embeddings") >>> embeddingsFinisher = EmbeddingsFinisher() \ ... .setInputCols(["sentence_embeddings"]) \ ... .setOutputCols("finished_embeddings") \ ... .setOutputAsVector(True) >>> pipeline = Pipeline().setStages([ ... documentAssembler, ... sentence, ... embeddings, ... embeddingsFinisher ... ]) >>> data = spark.createDataFrame([["John loves apples. Mary loves oranges. John loves Mary."]]).toDF("text") >>> result = pipeline.fit(data).transform(data) >>> result.selectExpr("explode(finished_embeddings) as result").show(5, 80) +--------------------------------------------------------------------------------+ | result| +--------------------------------------------------------------------------------+ |[-0.8951074481010437,0.13753940165042877,0.3108254075050354,-1.65693199634552...| |[-0.6180210709571838,-0.12179657071828842,-0.191165953874588,-1.4497021436691...| |[-0.822715163230896,0.7568016648292542,-0.1165061742067337,-1.59048593044281,...| +--------------------------------------------------------------------------------+
- setConfigProtoBytes(b)[source]#
Sets configProto from tensorflow, serialized into byte array.
- Parameters:
- bList[int]
ConfigProto from tensorflow, serialized into byte array
- static loadSavedModel(folder, spark_session)[source]#
Loads a locally saved model.
- Parameters:
- folderstr
Folder of the saved model
- spark_sessionpyspark.sql.SparkSession
The current SparkSession
- Returns:
- BertSentenceEmbeddings
The restored model
- static pretrained(name='sent_roberta_base', lang='en', remote_loc=None)[source]#
Downloads and loads a pretrained model.
- Parameters:
- namestr, optional
Name of the pretrained model, by default “sent_roberta_base”
- langstr, optional
Language of the pretrained model, by default “en”
- remote_locstr, optional
Optional remote address of the resource, by default None. Will use Spark NLPs repositories otherwise.
- Returns:
- RoBertaSentenceEmbeddings
The restored model